Publications by authors named "Ben Conran"

Atomically thin transition metal dichalcogenides (TMDs), a subclass of two-dimensional (2D) layered materials, have numerous fascinating properties that make them a promising platform for photonic and optoelectronic devices. In particular, excited state transport by TMDs is important in energy harvesting and photonic switching; however, long-range transport in TMDs is challenging due to the lack of availability of large area films. Whereas most previous studies have focused on small, exfoliated monolayer flakes, in this work we demonstrate metal-organic chemical vapor deposition grown centimeter-scale monolayers of WS that support polariton propagation lengths of up to 60 μm.

View Article and Find Full Text PDF

Polaritons in layered materials (LMs) are a promising platform to manipulate and control light at the nanometer scale. Thus, the observation of polaritons in wafer-scale LMs is critically important for the development of industrially relevant nanophotonics and optoelectronics applications. In this work, phonon polaritons (PhPs) in wafer-scale multilayer hexagonal boron nitride (hBN) grown by chemical vapor deposition are reported.

View Article and Find Full Text PDF

Van der Waals heterostructures (vdWHSs) enable the fabrication of complex electronic devices based on two-dimensional (2D) materials. Ideally, these vdWHSs should be fabricated in a scalable and repeatable way and only in the specific areas of the substrate to lower the number of technological operations inducing defects and impurities. Here, we present a method of selective fabrication of vdWHSs via chemical vapor deposition by electron-beam (EB) irradiation.

View Article and Find Full Text PDF

A promising strategy toward ultrathin, sensitive photodetectors is the combination of a photoactive semiconducting transition-metal dichalcogenide (TMDC) monolayer like MoS with highly conductive graphene. Such devices often exhibit a complex and contradictory photoresponse as incident light can trigger both photoconductivity and photoinduced desorption of molecules from the surface. Here, we use metal-organic chemical vapor deposition (MOCVD) to directly grow MoS on top of graphene that is deposited on a sapphire wafer via chemical vapor deposition (CVD) for realizing graphene-MoS photodetectors.

View Article and Find Full Text PDF

Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units.

View Article and Find Full Text PDF

2D materials have many outstanding properties that make them attractive for the fabrication of electronic devices, such as high conductivity, flexibility, and transparency. However, integrating 2D materials in commercial devices and circuits is challenging because their structure and properties can be damaged during the fabrication process. Recent studies have demonstrated that standard metal deposition techniques (like electron beam evaporation and sputtering) significantly damage the atomic structure of 2D materials.

View Article and Find Full Text PDF

In this work, we report the impact of substrate type on the morphological and structural properties of molybdenum disulfide (MoS) grown by chemical vapor deposition (CVD). MoS synthesized on a three-dimensional (3D) substrate, that is, SiO, in response to the change of the thermodynamic conditions yielded different grain morphologies, including triangles, truncated triangles, and circles. Simultaneously, MoS on graphene is highly immune to the modifications of the growth conditions, forming triangular crystals only.

View Article and Find Full Text PDF

The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated.

View Article and Find Full Text PDF