ACS Appl Mater Interfaces
November 2024
The electrospun nanofiber membrane has demonstrated great potential for wound management due to its porous structure, large surface area, mechanical strength, and barrier properties. However, there is a need to develop transparent bioactive nanofibers with strong mechanical properties to facilitate the monitoring of the healing process. In this study, we present an electrospinning-based method for creating transparent (∼80-90%), strong (∼11-13 MPa), and Janus nanofiber membranes.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives.
View Article and Find Full Text PDFWound healing is a complex process and reuires a long repair process. Poor healing effect is normally a challenge for wound healing. Designing sponge dressings with drug-assisted therapy, good breathability, and multiple functional structures effectively promotes wound healing.
View Article and Find Full Text PDFGraphene aerogels hold huge promise for the development of high-performance pressure sensors for future human-machine interfaces due to their ordered microstructure and conductive network. However, their application is hindered by the limited strain sensing range caused by the intrinsic stiffness of the porous microstructure. Herein, an anisotropic cross-linked chitosan and reduced graphene oxide (CCS-rGO) aerogel metamaterial is realized by reconfiguring the microstructure from a honeycomb to a buckling structure at the dedicated cross-section plane.
View Article and Find Full Text PDFBimetallic zeolitic imidazolate frameworks (BZIFs) have received enormous attention due to their unique physi-chemical properties, but are rarely reported for electrically conductive hydrogel (ECH) applications arising from low intrinsic conductivity and poor dispersion. Herein, we propose an innovative strategy to prepare highly conductive and mechanically robust ECHs by in situ growing Ni/Co-BZIFs within the polyvinyl alcohol/sodium alginate dual network (PZPS). 2-methylimidazole (MeIM) ligands copolymerize with pyrrole monomers, enhancing the electrical conductivity; meanwhile, MeIM ligands act as anchor points for in-situ formation of BZIFs, effectively avoiding phase-to-phase interfacial resistance and ensuring a uniform distribution in the hydrogel network.
View Article and Find Full Text PDFAll-solid-state sodium batteries (ASB) emerged as a strong contender in the global electrochemical energy storage market as a replacement for current lithium-ion batteries (LIB) owing to their high abundance, low cost, high safety, high energy density, and long calendar life. Inorganic electrolytes (IEs) are highly preferred over the conventional liquid and solid polymer electrolytes for sodium-ion batteries (SIBs) due to their high ionic conductivity (∼10-10 S cm), wide potential window (∼5 V), and overall better battery performances. This review discusses the bird's eye view of the recent progress in inorganic electrolytes such as Na-β"-alumina, NASICON, sulfides, antipervoskites, borohydride-type electrolytes, etc.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2024
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more.
View Article and Find Full Text PDFWhile MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance.
View Article and Find Full Text PDFA lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNT films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT as one unit layer (SMC) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.
View Article and Find Full Text PDFLiquid organic hydrogen carrier is a promising option for the transport and storage of hydrogen as a clean energy source. This study examines the stability and behavior of organic drops immobilized on a substrate during an interfacial hydrogen-evolution reaction (HER) at the drop surface and its surrounding aqueous solution. Hydrogen microbubbles form within the drop and rise to the drop apex.
View Article and Find Full Text PDFAdhesive hydrogel holds huge potential in biomedical applications, such as hemostasis and emergent wound management during outpatient treatment or surgery. However, most adhesive hydrogels underperform to offer robust adhesions on the wet tissue, increasing the risk of hemorrhage and reducing the fault tolerance of surgery. To address this issue, this work develops a polysaccharide-based bioadhesive hydrogel tape (ACAN) consisting of dual cross-linking of allyl cellulose (AC) and carboxymethyl chitosan (CMCS).
View Article and Find Full Text PDFPresent review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents.
View Article and Find Full Text PDFDue to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO ) reduction reaction (CO RR) is a cleaner strategy for CO utilization and conversion to stable energy (fuels).
View Article and Find Full Text PDFThis study focuses on the characterization and regulation of glycolipid metabolism of polysaccharides derived from biomass of Phyllostachys nigra (Lodd. ex Lindl.) root (PNr).
View Article and Find Full Text PDFMXene, a transition metal carbide/nitride, has been prominent as an ideal electrochemical active material for supercapacitors. However, the low MXene load limits its practical applications. As environmental concerns and sustainable development become more widely recognized, it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton.
View Article and Find Full Text PDFA highly reversible zinc anode is crucial for the commercialization of zinc-ion batteries. However, the change in the microstructure of the electric double layer originated from the dynamic change in charge density on the electrode greatly impacts anode reversibility during charge/discharge, which is rarely considered in previous research. Herein, the zwitterion additive is employed to create an adaptive interface by coupling the transient zwitterion dynamics upon the change of interfacial charge density.
View Article and Find Full Text PDFCobalt nickel bimetallic oxides (NiCoO) have received numerous attentions in terms of their controllable morphology, high temperature, corrosion resistance and strong electromagnetic wave (EMW) absorption capability. However, broadening the absorption bandwidth is still a huge challenge for NiCoO-based absorbers. Herein, the unique NiCoO@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.
View Article and Find Full Text PDFAccording to Archimedes' principle, a submerged object with a density lower than that of aqueous acid solution is more buoyant than a smaller one. In this work, a remarkable phenomenon is reported wherein a dissolving drop on a substrate rises in the water only after it has diminished to a much smaller size, though the buoyancy is smaller. The drop consisting of a polymer solution reacts with the acid in the surrounding, yielding a water-soluble product.
View Article and Find Full Text PDFWhile the rechargeable aqueous zinc-ion batteries (AZIBs) have been recognized as one of the most viable batteries for scale-up application, the instability on Zn anode-electrolyte interface bottleneck the further development dramatically. Herein, we utilize the amino acid glycine (Gly) as an electrolyte additive to stabilize the Zn anode-electrolyte interface. The unique interfacial chemistry is facilitated by the synergistic "anchor-capture" effect of polar groups in Gly molecule, manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn in the local region.
View Article and Find Full Text PDFModern healthcare engineering requires a wound dressing solution supported by materials with outstanding features such as high biological compatibility, strong mechanical strength, and higher transparency with effective antibacterial properties. Here, we present a unique hydrogel technology consisting of two negatively charged biopolymers and a positively charged synthetic polymer. The interaction between charged polymers through hydrogen bonds has been created, which are revealed in the simulation by density functional theory and Fourier transform infrared spectra of individual polymers and the hydrogel film.
View Article and Find Full Text PDFIn this study, a mild and eco-friendly synergistic treatment strategy was investigated to improve the interfacial compatibility of bamboo fibers with poly(lactic acid). The characterization results in terms of the chemical structure, surface morphology, thermal properties, and water resistance properties demonstrated a homogeneous dispersion and excellent interfacial compatibility of the treated composites. The excellent interfacial compatibility is due to multi-layered coating of bamboo fibers using synergistic treatment involving dilute alkali pretreatment, polydopamine coating and silane coupling agent modification.
View Article and Find Full Text PDFBiomimetic flexible electronics for E-skin have received increasing attention, due to their ability to sense various movements. However, the development of smart skin-mimic material remains a challenge. Here, a simple and effective approach is reported to fabricate super-tough, stretchable, and self-healing conductive hydrogel consisting of polyvinyl alcohol (PVA), Ti C T MXene nanosheets, and polypyrrole (PPy) (PMP hydrogel).
View Article and Find Full Text PDFHydrogels have been attracting increasing attention for application in wearable electronics, due to their intrinsic biomimetic features, highly tunable chemical-physical properties (mechanical, electrical, ), and excellent biocompatibility. Among many proposed varieties of hydrogels, conductive polymer-based hydrogels (CPHs) have emerged as a promising candidate for future wearable sensor designs, with capability of realizing desired features using different tuning strategies ranging from molecular design (with a low length scale of 10 m) to a micro-structural configuration (up to a length scale of 10 m). However, considerable challenges remain to be overcome, such as the limited strain sensing range due to the mechanical strength, the signal loss/instability caused by swelling/deswelling, the significant hysteresis of sensing signals, the de-hydration induced malfunctions, and the surface/interfacial failure during manufacturing/processing.
View Article and Find Full Text PDF