PARP inhibitors have shown promising clinical activities for patients with BRCA mutations and are changing the landscape of ovarian cancer treatment. However, the therapeutic mechanisms of action for PARP inhibition in the interaction of tumors with the tumor microenvironment and the host immune system remain unclear. We find that PARP inhibition by olaparib triggers robust local and systemic antitumor immunity involving both adaptive and innate immune responses through a STING-dependent antitumor immune response in mice bearing Brca1-deficient ovarian tumors.
View Article and Find Full Text PDFThe role of maternal and embryonic leucine zipper kinase (MELK) in cancer cell proliferation has been contentious, with recent studies arriving at disparate conclusions. We investigated the in vitro dependency of cancer cells on MELK under a range of assay conditions. Abrogation of MELK expression has little effect under common culture conditions, in which cells are seeded at high densities and reach confluence in 3-5 days.
View Article and Find Full Text PDFThis unit describes a reverse transcription-quantitative PCR (RT-qPCR)-based method for gene-targeted measurement of RNA translation levels. The method includes washing and lysing cells with a buffer containing cycloheximide to enrich ribosomal accumulation at translation initiation sites (TIS), followed by enzymatic treatment to generate ribosomal footprints, reverse transcription targeted towards TIS of specific transcripts of interest to generate complementary DNA (cDNA), and qPCR to measure the abundance of these footprints. This method enables time- and cost-effective assessment of changes in translation levels across focused panels of genes and across numerous samples.
View Article and Find Full Text PDFThe PI3K-Akt-mTOR signaling pathway is a master regulator of RNA translation. Pharmacological inhibition of this pathway preferentially and coordinately suppresses, in a 4EBP1/2-dependent manner, translation of mRNAs encoding ribosomal proteins. However, it is unclear whether mechanistic target of rapamycin (mTOR)-4EBP1/2 is the exclusive translation regulator of this group of genes, and furthermore, systematic searches for novel translation modulators have been immensely challenging because of difficulties in scaling existing RNA translation profiling assays.
View Article and Find Full Text PDFCyclin-dependent kinases 4 and 6 (CDK4/6) are fundamental drivers of the cell cycle and are required for the initiation and progression of various malignancies. Pharmacological inhibitors of CDK4/6 have shown significant activity against several solid tumours. Their primary mechanism of action is thought to be the inhibition of phosphorylation of the retinoblastoma tumour suppressor, inducing G1 cell cycle arrest in tumour cells.
View Article and Find Full Text PDFThe simultaneous intracellular delivery of multiple types of payloads, such as hydrophobic drugs and nucleic acids, typically requires complex carrier systems. Herein, we demonstrate a self-deliverable form of nucleic acid-drug nanostructure that is composed almost entirely of payload molecules. Upon light activation, the nanostructure sheds the nucleic acid shell, while the core, which consists of prodrug molecules, disintegrates via an irreversible self-immolative process, releasing free drug molecules and small molecule fragments.
View Article and Find Full Text PDF