Background: Posttraumatic stress disorder (PTSD) is a psychiatric disease that may follow traumatic exposure. Current treatments fail in about 30% of patients. Although repeated transcranial magnetic stimulation (rTMS) applied to the prefrontal cortex has been shown to be effective in the treatment of PTSD, the mechanisms need further investigation.
View Article and Find Full Text PDFPosttraumatic stress disorder (PTSD) is a widespread fear-related psychiatric affection associated with fear extinction impairments and important avoidance behaviors. Trauma-related exposure therapy is the current first-hand treatment for PTSD, yet it needs to be improved to shorten the time necessary to reach remission and increase responsiveness. Additional studies to decipher the neurobiological bases of extinction and effects on PTSD-like symptoms could therefore be of use.
View Article and Find Full Text PDFGrowing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression.
View Article and Find Full Text PDFObjective: We sought to examine the association between chronic Benzodiazepine (BZD) use and brain metabolism obtained from 2-deoxy-2-fluoro-D-glucose (FDG) positron emission tomography (PET) in the MEMENTO clinical cohort of nondemented older adults with an isolated memory complaint or mild cognitive impairment at baseline.
Methods: Our analysis focused on 3 levels: (1) the global mean brain standardized uptake value (SUVR), (2) the Alzheimer's disease (AD)-specific regions of interest (ROIs), and (3) the ratio of total SUVR on the brain and different anatomical ROIs. Cerebral metabolism was obtained from 2-deoxy-2-fluoro-D-glucose-FDG-PET and compared between chronic BZD users and nonusers using multiple linear regressions adjusted for age, sex, education, APOE ε 4 copy number, cognitive and neuropsychiatric assessments, history of major depressive episodes and antidepressant use.
Objectives: To assess olfactory functions (threshold, identification, and hedonic valence) of depressed subjects before and after an 8-week trial of escitalopram and compare the results of responders and nonresponders.
Methods: Fifty-two depressed subjects were recruited. Participants received escitalopram and were evaluated at two visits: baseline (V0) and week 8 (V8).
Nitrous oxide (NO) has recently emerged as a potential fast-acting antidepressant but the cerebral mechanisms involved in this effect remain speculative. We hypothesized that the antidepressant response to an Equimolar Mixture of Oxygen and Nitrous Oxide (EMONO) would be associated with changes in cerebral connectivity and brain tissue pulsations (BTP). Thirty participants (20 with a major depressive episode resistant to at least one antidepressant and 10 healthy controls-HC, aged 25-50, only females) were exposed to a 1-h single session of EMONO and followed for 1 week.
View Article and Find Full Text PDFPharmacotherapies for the treatment of major depressive disorder were serendipitously discovered almost seven decades ago. From this discovery, scientists pinpointed the monoaminergic system as the primary target associated with symptom alleviation. As a result, most antidepressants have been engineered to act on the monoaminergic system more selectively, primarily on serotonin, in an effort to increase treatment response and reduce unfavorable side effects.
View Article and Find Full Text PDFCurr Opin Psychiatry
January 2023
Purpose Of Review: The use of neurostimulation to treat mood disorders dates back to the 1930s. Recent studies have explored various neurostimulation methods aimed at both restoring a healthy brain and reducing adverse effects in patients. The purpose of this review is to explore the most recent hypotheses and clinical studies investigating the effects of stimulating the brain on mood disorders.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD.
View Article and Find Full Text PDFThe different depressive disorders that exist can take root at adolescence. For instance, some functional and structural changes in several brain regions have been observed from adolescence in subjects that display either high vulnerability to depressive symptoms or subthreshold depression. For instance, adolescents with depressive disorder have been shown to exhibit hyperactivity in hippocampus, amygdala and prefrontal cortex as well as volume reductions in hippocampus and amygdala (prefrontal cortex showing more variable results).
View Article and Find Full Text PDFBackground: The purpose of this study is to assess the psychometric properties of the French version of the Positivity scale (P scale), a self-report measure of positivity, which is the tendency to view and address life and experience with a positive outlook. Positivity is seen as a latent factor underlying multiple cognitive concepts such as self-esteem, life satisfaction, and optimism.
Methods: We recruited 666 volunteers (540 women and 126 men).
Previous cross-sectional studies found excessive Brain Tissue Pulsations (BTP) in mid-life depression, which could constitute a mechanism of brain damage in depression. However, it remains unclear whether successful antidepressant therapy restores BTP amplitudes. In this prospective study, we investigated longitudinal changes in BTP in patients with a major depressive episode (MDE), among responders and non-responders to escitalopram.
View Article and Find Full Text PDFDespite promising initial reports, corticotropin-releasing factor receptor type-1 (CRF-R1) antagonists have mostly failed to display efficacy in clinical trials for anxiety or depression. Rather than broad-spectrum antidepressant/anxiolytic-like drugs, they may represent an 'antistress' solution for single stressful situations or for patients with chronic stress conditions. However, the impact of prolonged CRF-R1 antagonist treatments on the hypothalamic-pituitary-adrenal (HPA) axis under chronic stress conditions remained to be characterized.
View Article and Find Full Text PDFRecent evidence suggests an association between benzodiazepines (BZDs) use and lower brain amyloid load, a hallmark of AD pathophysiology. Other AD-related markers include hippocampal atrophy, but the effect of BZDs on hippocampal volume remains unclear. We aimed at 1) replicating findings on BZDs use and brain amyloid load and 2) investigating associations between BZDs use and hippocampal volume, in the MEMENTO clinical cohort of nondemented older adults with isolated memory complaint or light cognitive impairment at baseline.
View Article and Find Full Text PDFAdult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus.
View Article and Find Full Text PDFMany studies evaluated the functional role of adult hippocampal neurogenesis (AHN) and its key role in cognitive functions and mood regulation. The effects of promoting AHN on the recovery of stress-induced symptoms have been well studied, but its involvement in stress resilience remains elusive. We used a mouse model enabling us to foster AHN before the exposure to unpredictable chronic mild stress (UCMS) to evaluate the potential protective effects of AHN on stress, assessing the depressive-like phenotype and executive functions.
View Article and Find Full Text PDFBackground: Several lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1β, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice.
View Article and Find Full Text PDFMajor depressive disorder is a common debilitating mental health problem that represents one of the leading causes of disability. Up to date, the therapeutic targets and approaches are still limited. Adult hippocampal neurogenesis (AHN) has been proposed as a critical contributor to the pathophysiology and treatment of depression, altering the hippocampal control over stress response at network, neuroendocrine and behavioral levels.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls.
View Article and Find Full Text PDFCholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases.
View Article and Find Full Text PDFThis article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
View Article and Find Full Text PDF