Publications by authors named "Belton P"

Background: Contemporary surgical practices for traumatic brain injury (TBI) remain unclear. We describe the clinical profile of an 18-centre US TBI cohort with cranial surgery.

Methods: The prospective, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (2014-2018; ClinicalTrials.

View Article and Find Full Text PDF

Objectives: An estimated 14-23% of patients with traumatic brain injury (TBI) incur multiple lifetime TBIs. The relationship between prior TBI and outcomes in patients with moderate to severe TBI (msTBI) is not well delineated. We examined the associations between prior TBI, in-hospital mortality, and outcomes up to 12 months after injury in a prospective US msTBI cohort.

View Article and Find Full Text PDF

The synthesis of drug-loaded PLGA nanoparticles through nanoprecipitation in solvent/antisolvent mixtures is well reported but lacks clarity in explaining drug loading mechanisms and the prediction of efficiency of drug entrapment. Various methods using physical parameters such as log and solid-state drug-polymer solubility aim to predict the intensity of drug-polymer interactions but lack precision. In particular, the zero-enthalpy method for drug/polymer solubility may be intrinsically inaccurate, as we demonstrate.

View Article and Find Full Text PDF

Objective: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients.

Methods: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI.

View Article and Find Full Text PDF

Isolated traumatic subarachnoid hemorrhage (tSAH) after traumatic brain injury (TBI) on head computed tomography (CT) scan is often regarded as a "mild" injury, with reduced need for additional workup. However, tSAH is also a predictor of incomplete recovery and unfavorable outcome. This study aimed to evaluate the characteristics of CT-occult intracranial injuries on brain magnetic resonance imaging (MRI) scan in TBI patients with emergency department (ED) arrival Glasgow Coma Scale (GCS) score 13-15 and isolated tSAH on CT.

View Article and Find Full Text PDF

Semi-solid extrusion (SSE) 3D printing has recently attracted increased attention for its pharmaceutical application as a potential method for small-batch manufacturing of personalised solid dosage forms. It has the advantage of allowing ambient temperature printing, which is especially beneficial for the 3D printing of thermosensitive drugs. In this study, the effects of polymeric compositions (single hydroxypropyl methylcellulose (HPMC) system and binary HPMC + polyvinylpyrrolidone (PVP) system), disintegrant (silicon oxide (SiO)), and active pharmaceutical ingredients (tranexamic acid (TXA) and paracetamol (PAC)) on the printability of semisolid inks and the qualities of SSE printed drug-loaded tablets were investigated.

View Article and Find Full Text PDF

Importance: One traumatic brain injury (TBI) increases the risk of subsequent TBIs. Research on longitudinal outcomes of civilian repetitive TBIs is limited.

Objective: To investigate associations between sustaining 1 or more TBIs (ie, postindex TBIs) after study enrollment (ie, index TBIs) and multidimensional outcomes at 1 year and 3 to 7 years.

View Article and Find Full Text PDF

Combining multiple medications in a single dosage form has emerged as an important strategy for treating complex diseases and could help tackle the growing issue of polypharmacy. In this study we investigated the suitability of different dual-drug designs for achieving simultaneous, delayed and pulsatile drug release regimes using two model formulations: an immediate release erodible system of Eudragit E PO loaded with paracetamol; and an erodible swellable system of Soluplus loaded with felodipine. Both binary formulations, despite not fused deposition modelling (FDM) printable, were successfully printed using a thermal droplet-based 3D printing method, Arburg Plastic Freeforming (APF), and exhibited good reproducibility.

View Article and Find Full Text PDF

Introduction: Neuroworsening may be a sign of progressive brain injury and is a factor for treatment of traumatic brain injury (TBI) in intensive care settings. The implications of neuroworsening for clinical management and long-term sequelae of TBI in the emergency department (ED) require characterization.

Methods: Adult TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study with ED admission and disposition Glasgow Coma Scale (GCS) scores were extracted.

View Article and Find Full Text PDF

Formulating poorly soluble drugs with polymers in the form of solid dispersions has been widely used for improving drug dissolution. Endogenous surface-active species present in the gut, such as bile salts, lecithin and other phospholipids, have been shown to play a key role in facilitating lipids and poorly soluble drugs solubilisation in the gut. In this study, we examined the possible occurrence of interactions between a model bile salt, sodium taurocholate (NaTC), and model spray dried solid dispersions comprising piroxicam and Hydroxypropyl Methylcellulose (HPMC), a commonly used hydrophilic polymer for solid dispersion preparation.

View Article and Find Full Text PDF

silkworm natural silk is a fibrous biopolymer with a block copolymer design containing both hydrophobic and hydrophilic regions. Using H NMR relaxation, this work studied natural silk fibres oriented at 0° and 90° to the static magnetic field to clarify how measured NMR parameters reflect the structure and anisotropic properties of hydrated silk fibres. The FTIR method was applied to monitor the changes in the silk I and -sheet conformations.

View Article and Find Full Text PDF

Three-dimensional (3D) printing allows for the design and printing of more complex designs than traditional manufacturing processes. For the manufacture of personalised medicines, such an advantage could enable the production of personalised drug products on demand. In this study, two types of extrusion-based 3D printing techniques, semi-solid syringe extrusion 3D printing and fused deposition modelling, were used to fabricate a combi-layer construct (combi-pill).

View Article and Find Full Text PDF

Long acting injectables (LAI) have received increased research and commercial interest due to their potential for improving treatment effectiveness and adherence for antipsychotic, antiviral and addiction treatments. A range of materials have been used to formulate LAI products, including lipids and polymers. Classic lipid-based LAI, such as oil solutions of antipsychotic drugs, have been widely prescribed to patients.

View Article and Find Full Text PDF

A range of 3D printing methods have been investigated intensively in the literature for manufacturing personalised solid dosage forms, with infill density commonly used to control release rates. However, there is limited mechanistic understanding of the impacts of infill adjustments on in vitro performance when printing tablets of constant dose. In this study, the effects and interplay of infill pattern and tablet geometry scaling on dose and drug release performance were investigated.

View Article and Find Full Text PDF

Purpose: Semi-solid extrusion (SSE) 3D printing has potential pharmaceutical applications for producing personalised medicine. However, the effects of ink properties and drug incorporation on the quality of printed medication have not been thoroughly studied, particularly for porous geometries. This study aimed to investigate the effects of the presence of solid drug particles in SSE inks on the printing quality of porous structures.

View Article and Find Full Text PDF

Purpose: To develop a new direct granule fed 3D printing method for manufacturing pharmaceutical solid dosage forms with porous structures using a thermal droplet deposition technology.

Methods: Eudragit® E PO was used as the model polymer, which is well-known to be not FDM printable without additives. Wet granulation was used to produce drug loaded granules as the feedstock.

View Article and Find Full Text PDF

Personalised orodispersible films (ODFs) manufactured at the point of care offer the possibility of adapting the dosing requirements for individual patients. Inkjet printing was extensively explored as a tool to produce personalised ODFs, but it is extensively limited to dispensing liquid with low viscosity and the interaction between ink and edible substrate complicates the fabrication process. In this study, we evaluated the feasibility of using a micro-dispensing (MD) jet system capable of accurately dispensing viscous liquid to fabricate substrate-free ODFs on-demand.

View Article and Find Full Text PDF

An effective delivery vehicle of genetic materials to their target site is the key to a successful gene therapy. In many cases, nanoparticles are used as the vehicle of choice and the efficiency of the delivery relies heavily on the physicochemical properties of the nanoparticles. Microfluidics, although being a low throughput method, has been increasingly researched for the preparation of nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • 3D printing can create porous pharmaceutical tablets on-demand to control drug release rates, yet the specific effects of porosity on swellable and erodible forms remain under-researched.
  • The study utilized a model formulation and a novel 3D printing method called Arburg plastic free-forming (APF) to analyze how varying infill percentages affected the drug release of the tablets in different pH environments.
  • Results showed that as tablet infill decreased, the drug release rates increased, highlighting the intricate relationship between porosity, swelling, and erosion in drug delivery systems.
View Article and Find Full Text PDF

Solid dispersion-based nanofiber formulations of poorly soluble drugs prepared by electrospinning (ES) with a water-soluble polymer, can offer significant improvements in drug dissolution for oral drug administration. However, when hygroscopic polymers, such as polyvinylpyrrolidone (PVP) are used, environmental moisture sorption can lead to poor physical stability on storage. This study investigated the use of polymer blends to modify PVP-based ES formulations of a model poorly soluble drug, fenofibrate (FF), to improve its physical stability without compromising dissolution enhancement.

View Article and Find Full Text PDF

Odontoid fractures typically occur as a result of trauma: high-velocity injuries like motor vehicle accidents in young people and falls for the elderly. Odontoid fractures are the most common cervical spine fractures in patients over 65, with type II being the most common. However, spinal cord transections are rare with these types of injuries, especially without significant fracture displacement, translation or evidence of ligamentous disruption on post-injury imaging.

View Article and Find Full Text PDF

Aedes japonicus japonicus (Theobald) is a relatively recent immigrant to the Pacific Northwest, having been collected in Washington State in 2001 and in British Columbia (BC) since 2014. We applied a molecular barcoding approach to determine the phylogenetic relationship of Ae. j.

View Article and Find Full Text PDF

Hot melt extrusion (HME) is a widely used manufacturing process for pharmaceutical solid dispersions. The complexity of the HME formulations and the number of excipients used in the process are increasing with the advancement of the relevant knowledge. However, one of the areas that is still significantly lacking understanding is the control of internal microstructure of extrudates.

View Article and Find Full Text PDF

For the pharmaceutical industry, the preformulation screening of the compatibility of drug and polymeric excipients can often be time-consuming because of the use of trial-and-error approaches. This is also the case for selecting highly effective polymeric excipients for forming molecular dispersions in order to improve the dissolution and subsequent bio-availability of a poorly soluble drug. Previously, we developed a new thermal imaging-based rapid screening method, thermal analysis by structure characterization (TASC), which can rapidly detect the melting point depression of a crystalline drug in the presence of a polymeric material.

View Article and Find Full Text PDF