Publications by authors named "Belov M"

The problem of an optimal mapping between Hilbert spaces IN of |ψ〉 and OUT of |ϕ〉 based on a set of wavefunction measurements (within a phase) ψ_{l}→ϕ_{l}, l=1,⋯,M, is formulated as an optimization problem maximizing the total fidelity ∑_{l=1}^{M}ω^{(l)}|〈ϕ_{l}|U|ψ_{l}〉|^{2} subject to probability preservation constraints on U (partial unitarity). The constructed operator U can be considered as an IN to OUT quantum channel; it is a partially unitary rectangular matrix (an isometry) of dimension dim(OUT)×dim(IN) transforming operators as A^{OUT}=UA^{IN}U^{†}. An iterative algorithm for finding the global maximum of this optimization problem is developed, and its application to a number of problems is demonstrated.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots.

View Article and Find Full Text PDF

Metal carbides are known to contain small carbon units similar to those found in the molecules of methane, acetylene, and allene. However, for numerous binary systems ab initio calculations predict the formation of unusual metal carbides with exotic polycarbon units, [C] rings, and graphitic carbon sheets at high pressure (HP). Here we report the synthesis and structural characterization of a HP-CaC polymorph and a CaC compound featuring deprotonated polyacene-like and para-poly(indenoindene)-like nanoribbons, respectively.

View Article and Find Full Text PDF

Background: Throughout the COVID-19 pandemic, first-line healthcare leaders across the healthcare system played crucial roles leading, motivating, and supporting staff.

Purpose: This study aims to describe multidisciplinary first-line healthcare leaders' experiences during the COVID-19 pandemic in Ontario, Canada using transformational and crisis leadership theory.

Methods: A descriptive two-phase (quantitative & qualitative) design was conducted in the spring of 2021.

View Article and Find Full Text PDF

Purpose: We use neural networks to evaluate and compare the spatial resolution of two different simulated monolithic PET detector elements. The effects of mixing events with single photoeffect interactions and multiple Compton scatterings are also studied.

Methods: Two PET detector models were used in this study.

View Article and Find Full Text PDF

Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating.

View Article and Find Full Text PDF

We report the development of a new high-flux electrospray ionization-based instrument for soft landing of mass-selected fragment ions onto surfaces. Collision-induced dissociation is performed in a collision cell positioned after the dual electrodynamic ion funnel assembly. The high duty cycle of the instrument enables high-coverage deposition of mass-selected fragment ions onto surfaces at a defined kinetic energy.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualising the spatial locations of lipids in biological tissues. However, a major challenge in interpreting the biological significance of local lipid compositions and distributions detected using MALDI-MSI is the difficulty in associating spectra with cellular lipid metabolism within the tissue. By-and-large this is due to the typically limited spatial resolution of MALDI-MSI (30-100 μm) meaning individual spectra represent the average spectrum acquired from multiple adjacent cells, each potentially possessing a unique lipid composition and biological function.

View Article and Find Full Text PDF
Article Synopsis
  • A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) has been shown to significantly relieve symptoms in irritable bowel syndrome (IBS) patients, with a focus on an Irish cohort over a year.
  • In a study of 164 patients referred to an FODMAP-trained dietician, 127 completed initial follow-ups at 3 months, with notable improvements in symptoms like lethargy, bloating, and abdominal pain.
  • After reintroducing high FODMAP foods, patients maintained their symptom relief, indicating that adherence to the low FODMAP diet contributes to sustained symptom control in IBS.
View Article and Find Full Text PDF

Matrix-assisted laser desorption-ionization mass spectrometry imaging in transmission-mode geometry (t-MALDI-MSI) can provide molecular information with a pixel size of 1 µm and smaller, which makes this label-free method highly interesting for characterizing the chemical composition of tissues and cells on a (sub)cellular level. However, a major hindrance for wider use of the technology is the reduced ion abundance at small pixel sizes. Here we mitigate this problem by use of laser-induced post-ionization (MALDI-2) and by adapting a t-MALDI-2 ion source to an Orbitrap mass analyzer.

View Article and Find Full Text PDF

Beryllium oxides have been extensively studied due to their unique chemical properties and important technological applications. Typically, in inorganic compounds beryllium is tetrahedrally coordinated by oxygen atoms. Herein based on results of in situ single crystal X-ray diffraction studies and ab initio calculations we report on the high-pressure behavior of CaBePO, to the best of our knowledge the first compound showing a step-wise transition of Be coordination from tetrahedral (4) to octahedral (6) through trigonal bipyramidal (5).

View Article and Find Full Text PDF

A new apparatus for ion soft landing research was developed and is reported in this contribution. The instrument includes a dual polarity high-flux electrospray ionization (ESI) interface, a tandem electrodynamic ion funnel system, a collisional flatapole, a quadrupole mass filter, and a focusing lens. The instrument enables production of ionic layers by soft landing of mass-selected ions onto surfaces with balanced or imbalanced charge conditions using either layer-by-layer (LBL) or fast polarity switching modes.

View Article and Find Full Text PDF

Native mass spectrometry continues to develop as a significant complement to traditional structural biology techniques. Within native mass spectrometry (MS), surface-induced dissociation (SID) has been shown to be a powerful activation method for the study of noncovalent complexes of biological significance. High-resolution mass spectrometers have become increasingly adapted to the analysis of high-mass ions and have demonstrated their importance in understanding how small mass changes can affect the overall structure of large biomolecular complexes.

View Article and Find Full Text PDF

The identification of molecular ions produced by MALDI or ESI strongly relies on their fragmentation to structurally informative fragments. The widely diffused fragmentation techniques for ESI multiply charged ions are either incompatible (ECD and ETD) or show lower efficiency (CID, HCD), with the predominantly singly charged peptide and protein ions formed by MALDI. In-source decay has been successfully adopted to sequence MALDI-generated ions, but it further increases spectral complexity, and it is not compatible with mass-spectrometry imaging.

View Article and Find Full Text PDF

Modelling of processes involving deep Earth liquids requires information on their structures and compression mechanisms. However, knowledge of the local structures of silicates and silica (SiO) melts at deep mantle conditions and of their densification mechanisms is still limited. Here we report the synthesis and characterization of metastable high-pressure silica phases, coesite-IV and coesite-V, using in situ single-crystal X-ray diffraction and ab initio simulations.

View Article and Find Full Text PDF
Article Synopsis
  • Native mass spectrometry helps us understand the structure of large biological molecules.
  • To analyze more complex samples, improvements in mass spectrometry instruments are necessary.
  • This paper discusses upgrades to the Orbitrap Q Exactive Plus mass spectrometer to enhance signal intensity, mass resolution, and the range of measurable masses.
View Article and Find Full Text PDF

Matrix-Assisted Laser Desorption Ionization, MALDI, has been increasingly used in a variety of biomedical applications, including tissue imaging of clinical tissue samples, and in drug discovery and development. These studies strongly depend on the performance of the analytical instrumentation and would drastically benefit from improved sensitivity, reproducibility, and mass/spatial resolution. In this work, we report on a novel combined MALDI/ESI interface, which was coupled to different Orbitrap mass spectrometers (Elite and Q Exactive Plus) and extensively characterized with peptide and protein standards, and in tissue imaging experiments.

View Article and Find Full Text PDF

Protein complexes often represent an ensemble of different assemblies with distinct functions and regulation. This increased complexity is enabled by the variety of protein diversification mechanisms that exist at every step of the protein biosynthesis pathway, such as alternative splicing and post transcriptional and translational modifications. The resulting variation in subunits can generate compositionally distinct protein assemblies.

View Article and Find Full Text PDF

Conventional TopN data-dependent acquisition (DDA) LC-MS/MS analysis identifies only a limited fraction of all detectable precursors because the ion-sampling rate of contemporary mass spectrometers is insufficient to target each precursor in a complex sample. TopN DDA preferentially targets high-abundance precursors with limited sampling of low-abundance precursors and repeated analyses only marginally improve sample coverage due to redundant precursor sampling. In this work, advanced precursor ion selection algorithms were developed and applied in the bottom-up analysis of HeLa cell lysate to overcome the above deficiencies.

View Article and Find Full Text PDF

Small molecules are known to stabilize membrane proteins and to modulate their function and oligomeric state, but such interactions are often hard to precisely define. Here we develop and apply a high-resolution, Orbitrap mass spectrometry-based method for analyzing intact membrane protein-ligand complexes. Using this platform, we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.

View Article and Find Full Text PDF

Efforts to map the human protein interactome have resulted in information about thousands of multi-protein assemblies housed in public repositories, but the molecular characterization and stoichiometry of their protein subunits remains largely unknown. Here, we report a computational search strategy that supports hierarchical top-down analysis for precise identification and scoring of multi-proteoform complexes by native mass spectrometry.

View Article and Find Full Text PDF

A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics.

View Article and Find Full Text PDF

A new ion mobility spectrometer (IMS) platform was developed to improve upon the sensitivity and reproducibility of our previous platforms, and further enhance IMS-MS utility for broad 'pan-omics' measurements. The new platform incorporated an improved electrospray ionization source and interface for enhanced sensitivity, and providing the basis for further benefits based upon implementation of multiplexed IMS. The ion optics included electrodynamic ion funnels at both the entrance and exit of the IMS, an ion funnel trap for ion injection, and a design in which nearly all ion optics (e.

View Article and Find Full Text PDF

Native mass spectrometry is emerging as a powerful tool for the characterization of intact antibodies and antibody-based therapeutics. Here, we demonstrate new possibilities provided by the implementation of a high mass quadrupole mass selector on the recently introduced Orbitrap Exactive EMR mass spectrometer. This configuration allows precursor ion selection, and thus tandem mass spectrometry experiments, even on analytes with masses in the hundreds of kilodaltons.

View Article and Find Full Text PDF

In pronounced concomitant pathology and high risks of open operative treatment endovascular prosthetic repair of the abdominal aorta is a method of choice. Presented herein is a clinical case report concerning successful surgical treatment of a patient with an aneurysm of the infrarenal portion of the aorta and high risk of open operative treatment. The patient underwent unilateral endovascular prosthetic repair of the abdominal aortic aneurysm and crossover femoro-femoral bypass grafting with a good postoperative outcome.

View Article and Find Full Text PDF