Publications by authors named "Belomestnykh S"

We conduct the first "light-shining-through-wall" (LSW) search for dark photons using two state-of-the-art high-quality-factor superconducting radio frequency (SRF) cavities -Dark SRF-and report the results of its pathfinder run. Our new experimental setup enables improvements in sensitivity over previous searches and covers new dark photon parameter space. We design delicate calibration and measurement protocols to utilize the high-Q setup at Dark SRF.

View Article and Find Full Text PDF

High brightness, high charge electron beams are critical for a number of advanced accelerator applications. The initial emittance of the electron beam, which is determined by the mean transverse energy (MTE) and laser spot size, is one of the most important parameters determining the beam quality. The bialkali photocathodes illuminated by a visible laser have the advantages of high quantum efficiency (QE) and low MTE.

View Article and Find Full Text PDF

Continuous-wave photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic x-ray free electron lasers, high-brightness hadron beams, or a new generation of microchip production. In this Letter we report on the record-performing superconducting rf electron gun with CsK_{2}Sb photocathode.

View Article and Find Full Text PDF

Cooling of beams of gold ions using electron bunches accelerated with radio-frequency systems was recently experimentally demonstrated in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Such an approach is new and opens the possibility of using this technique at higher energies than possible with electrostatic acceleration of electron beams. The challenges of this approach include generation of electron beams suitable for cooling, delivery of electron bunches of the required quality to the cooling sections without degradation of beam angular divergence and energy spread, achieving the required small angles between electron and ion trajectories in the cooling sections, precise velocity matching between the two beams, high-current operation of the electron accelerator, as well as several physics effects related to bunched-beam cooling.

View Article and Find Full Text PDF

High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment.

View Article and Find Full Text PDF

We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 10(4) to 10(9) provided that the adjustment range of a phase shifter covers 0°-360°.

View Article and Find Full Text PDF