Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing, we characterized the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia.
View Article and Find Full Text PDFEpilithic algae dominate cover on coral reefs globally, forming a critical ecological interface between the benthos and reef organisms. Yet, the drivers of epilithic algal composition, and how composition relates to the distribution of key taxa, remain unclear. We develop a novel metric, the Epilithic Algal Ratio, based on turf cover relative to total epilithic algae cover, and use this metric to assess cross-scale patterns.
View Article and Find Full Text PDFDiet has been identified as a major driver of reef fish lineage diversification, producing one of the most speciose vertebrate assemblages today. Yet, there is minimal understanding of how, when and why diet itself has evolved. To address this, we used a comprehensive gut content dataset, alongside a recently developed phylogenetic comparative method to assess multivariate prey use across a diverse animal assemblage, coral reef fishes.
View Article and Find Full Text PDFUnderstanding the numerous roles that colouration serves in the natural world has remained a central focus in many evolutionary and ecological studies. However, to accurately characterise and then compare colours or patterns among individuals or species has been historically challenging. In recent years, there have been a myriad of new resources developed that allow researchers to characterise biological colours and patterns, specifically from digital imagery.
View Article and Find Full Text PDFGrazing by nominally herbivorous fishes is widely recognised as a critical ecosystem function on coral reefs. However, several studies have suggested that herbivory is reduced in the presence of predators, especially sharks. Nevertheless, the effects of shark presence on grazing, under natural settings, remains poorly resolved.
View Article and Find Full Text PDFHabitat associations underpin species ecologies in high-diversity systems. Within tropical, shallow water coral reefs, the relationship between fishes and corals is arguably the most iconic and highly scrutinized. A strong relationship between fishes and reef-building hard corals is often assumed, a belief supported by studies that document the decline of reef fishes following coral loss.
View Article and Find Full Text PDFCoral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent.
View Article and Find Full Text PDFEcosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study.
View Article and Find Full Text PDFProductivity of oligotrophic coral reefs is largely dependent on the constant influx of zooplankton. However, our understanding of how zooplankton communities in tropical reef-associated regions vary over large spatial and temporal scales is limited. Using the Australian continuous plankton recorder dataset, we explored if, and to what extent, the off-reef zooplankton community along the Queensland shelf (including most of the Great Barrier Reef lagoon) varied with latitude, month, and diel time.
View Article and Find Full Text PDFSediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales.
View Article and Find Full Text PDFThe biodiversity of tropical reefs is typified by the interaction between fishes and corals. Despite the importance of this ecological association, coevolutionary patterns between these two animal groups have yet to be critically evaluated. After compiling a large dataset on the prevalence of fish-coral interactions, we found that only a minority of fish species associate strongly with live corals (~5%).
View Article and Find Full Text PDFIndividual growth is a fundamental life history trait, yet its macroevolutionary trajectories have rarely been investigated for entire animal assemblages. Here we analyse the evolution of growth in a highly diverse vertebrate assemblage-coral reef fishes. We combine state-of-the-art extreme gradient boosted regression trees with phylogenetic comparative methods to detect the timing, number, location and magnitude of shifts in the adaptive regime of somatic growth.
View Article and Find Full Text PDFNearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030.
View Article and Find Full Text PDFConnectivity is vital for the biodiversity and functioning of marine ecosystems. It is known to be important for coral reefs, but the scales at which connectivity effects matter-and, correspondingly, the scales at which management responses are needed-are poorly understood in marine systems. We used 23 years of fish monitoring data collected from ~50 different coral reefs by the Australian Institute of Marine Science, together with a range of geographic data layers (including the Allen Coral Atlas) and additional network analysis, to explore the balance of local and regional influence on fish communities.
View Article and Find Full Text PDFThe concept of dominance is frequently used to describe changes in rapidly reconfiguring ecosystems, but the definition of dominance can vary widely among studies. Using coral reefs as a model, we use extensive benthic composition data to explore how variability in applying dominance concepts can shape perceptions. We reveal that coral dominance is sensitive to the exclusion of key algal groups and the categorization of other benthic groups, with ramifications for detecting an ecosystem phase shift.
View Article and Find Full Text PDFThe Great Barrier Reef (GBR)-the largest coral reef ecosystem in the world-supports over 1,200 fish species with some of the highest population densities and diversities observed in vertebrates, offering a high potential for virus transmission among species. As such, the GBR represents an exceptional natural ecosystem to determine the impact of host community diversity on virus evolution and emergence. In recent decades, the GBR has also experienced significant threats of extinction, making it one of the most vulnerable ecosystems on the planet.
View Article and Find Full Text PDFGlobally, ecosystems are being reconfigured by a range of intensifying human-induced stressors. Coral reefs are at the forefront of this environmental transformation, and if we are to secure their key ecosystem functions and services, it is important to understand the likely configuration of future reefs. However, the composition and trajectory of global coral reef benthic communities is currently unclear.
View Article and Find Full Text PDFTraits are measurable features of organisms. Functional traits aspire to more. They quantify an organism's ecology and, ultimately, predict ecosystem functions based on local communities.
View Article and Find Full Text PDFEcosystem processes are challenging to quantify at a community level, particularly within complex ecosystems (e.g., rainforests, coral reefs).
View Article and Find Full Text PDFCyanobacterial mats are increasingly recognised as a symptom of coral reef change. However, the spatial distribution of cyanobacterial mats during coral bleaching has received limited attention. We explored cyanobacterial mat distribution during a bleaching event at Lizard Island and considered hydrodynamics as a potential modifier.
View Article and Find Full Text PDFAlgal turfs form a critical interface on coral reefs that interacts with several key ecosystem processes. While we know these turfs have a remarkable propensity to accumulate sediments, which can have a range of ecosystem impacts, their role as sinks for heavy metals remains largely unexamined. Here we quantified the concentration of 15 metals in algal turf sediments from Lizard Island and Orpheus Island on the Great Barrier Reef, and specifically explored how the loads of arsenic, cobalt, iron and lead were related to turf length.
View Article and Find Full Text PDFThe ecological functions of nocturnal coral reef fishes are poorly known. Yet, nocturnal resources for coral reef consumers are theoretically as abundant and productive, if not more so, than their diurnal counterparts. In this study, we quantify and contrast the energetic dynamics of nocturnal and diurnal fishes in a model coral reef ecosystem, evaluating whether they attain similar levels of biomass production.
View Article and Find Full Text PDFDuring the excavation of Mayan tombs, little did the archaeologists know that the fossils they discovered in the tomb stones would fundamentally alter our understanding of the earliest origins of coral reef fishes. Located just 500 kilometers from the point where an asteroid impact reconfigured the world's biological systems 66 million years ago, we find the earliest origins of three typical reef fish groups. Their presence in Mexico just 3 million years after this impact finally reconciles the conflict between the fossil and phylogenetic evidence for the earliest origins of reef fishes.
View Article and Find Full Text PDF