Acquired drug resistance is a major challenge in the management of cancer, which underscores the need for discovery and development of novel therapeutic strategies. We report here the mechanism of the anti-cancer activity of a small coordinate complex composed of the rare earth metal praseodymium (Pr) and mercaptopyridine oxide (MPO; pyrithione). Exposure of cancer cells to relatively low concentrations of the conjugate Pr-MPO (5 µM) significantly impairs cell survival in a p53-independent manner and irrespective of the drug resistant phenotype.
View Article and Find Full Text PDFTechnological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study.
View Article and Find Full Text PDFRAS is one of the most commonly mutated oncogenes associated with multiple cancer hallmarks. Notably, RAS activation induces intracellular reactive oxygen species (ROS) generation, which we previously demonstrated as a trigger for autophagy-associated execution of mutant KRAS-expressing cancer cells. Here we report that drug (merodantoin; C1)-induced activation of mutant KRAS promotes phospho-AKT S473-dependent ROS-mediated S616 phosphorylation and mitochondrial localization of DNM1L/DRP1 (dynamin 1 like) and cleavage of the fusion-associated protein OPA1 (OPA1 mitochondrial dynamin like GTPase).
View Article and Find Full Text PDFThe ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized.
View Article and Find Full Text PDFHow cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator.
View Article and Find Full Text PDFThrough oxidative phosphorylation, mitochondria play a central role in energy production and are an important production source of reactive oxygen species (ROS). Not surprisingly, viruses have evolved to exploit this organelle in order to support their infection cycle. Beyond its role in the cellular antiviral response, induction of oxidative stress has emerged as a common strategy employed by many viruses to promote their replication.
View Article and Find Full Text PDFCutaneous melanoma is the most lethal type of skin cancer. Early detection is crucial to improve the outcome of melanoma patients. The identification of noninvasive prognostic biomarkers for the follow-up of melanoma patients is still in demand for clinical use.
View Article and Find Full Text PDFInspired by the automated synthesis of DNA on a solid support, the electron-rich dialkoxynaphthalene (DAN) donor and the electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor, amphiphilic foldamers have been synthesised from their respective phosphoramidite building blocks. The folding of the phosphodiester-linked hexamer (DAN-NDI)3 revealed the formation of regular supramolecular nanotubes in water resulting from the self-assembly of multiple hexamers stabilized by donor/acceptor interactions and the solvophobic effect.
View Article and Find Full Text PDFTechnological breakthroughs in electron microscopy (EM) have made it possible to solve structures of biological macromolecular complexes and to raise novel challenges, specifically related to sample preparation and heterogeneous macromolecular assemblies such as DNA-protein, protein-protein, and membrane protein assemblies. Here, we built a V-shaped DNA origami as a scaffolding molecular system to template proteins at user-defined positions in space. This template positions macromolecular assemblies of various sizes, juxtaposes combinations of biomolecules into complex arrangements, isolates biomolecules in their active state, and stabilizes membrane proteins in solution.
View Article and Find Full Text PDFSepsis is a potentially fatal condition triggered by systemic inflammatory response to infection. Due to the heightened immune reactivity and multi-organ pathology, treatment options are limited and several clinical trials have not produced the desired outcome, hence the interest in the discovery of novel therapeutic strategies. The polyphenol resveratrol (RSV) has shown promise against several pathological states, including acute and chronic inflammation.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
December 2020
Aberrant cell death signaling and oxidative stress are implicated in myriad of human pathological states such as neurodegenerative, cardiovascular, metabolic and liver diseases, as well as drug-induced toxicities. While regulated cell death and mild oxidative stress are essential during normal tissue homeostasis, deregulated signaling can trigger massive depletion in a particular cell type and/or damage tissues and impair organ function with deleterious consequences that manifest as disease states. If regeneration cannot restore tissue homeostasis, the severity of the disease correlates with the extent of cell loss.
View Article and Find Full Text PDFDeregulated cellular apoptosis is a hallmark of cancer and chemotherapy resistance. The B-cell lymphoma 2 (BCL-2) protein family members are sentinel molecules that regulate the mitochondrial apoptosis machinery and arbitrate cell fate through a delicate balance between pro- and anti-apoptotic factors. The recognition of the anti-apoptotic gene as an oncogenic driver in hematological malignancies has directed attention toward unraveling the biological significance of each of the BCL-2 superfamily members in cancer progression and garnered interest in the targeting of apoptosis in cancer therapy.
View Article and Find Full Text PDFThe death inhibitory proteins, cFLIP and Bcl-2, canonically act at different steps to regulate receptor-mediated apoptosis in cancer cells. Here we report that pharmacological or genetic means to effect an increase in intracellular superoxide result in cFLIP upregulation. Interestingly, Bcl-2 overexpression is associated with a concomitant increase in cFLIP, and reducing superoxide sensitizes Bcl-2 overexpressing cancer cells to receptor-mediated apoptosis via downregulation of cFLIP.
View Article and Find Full Text PDFIndian J Plast Surg
January 2019
Negative-pressure wound therapy (NPWT) has gained increasing popularity among clinicians since its introduction in 1997 as a potential aid to wound healing. Multiple benefits of NPWT have since been proven in studies, including increase in granulation tissue formation, decrease in bacterial load, and the improved survival of flaps. With our increasing use and greater understanding of the tissue and cellular changes that occur in a wound treated with NPWT, our lower-limb reconstructive practice has also evolved.
View Article and Find Full Text PDFDNA nanostructures with increasing complexity have showcased the power of programmable self-assembly from DNA strands. At the nascent stage of the field, a variety of small branched objects consisting of a few DNA strands were created. Since then, a quantum leap of complexity has been achieved by a scaffolded 'origami' approach and a scaffold-free approach using single-stranded tiles/bricks-creating fully addressable two-dimensional and three-dimensional DNA nanostructures designed on densely packed lattices.
View Article and Find Full Text PDFThe experimental validation of the existence of cancer stem cells (CSC) has had a significant impact on our understanding of the cellular mechanisms and signaling networks involved in the process of carcinogenesis and its progression. These findings provide insights into the critical role that tumor microenvironment and metabolism play in the acquisition of the drug resistance phenotype as well as provide potential targets for therapeutic exploitation. Here we briefly review the literature on the involvement of key signaling pathways such as Wnt/β-catenin, Notch, Hedgehog and STAT3 in the appearance of cancer cells with stem cells-like characteristics.
View Article and Find Full Text PDFNegative Pressure Wound Therapy (NPWT), a widely used modality in the management of surgical and trauma wounds, offers clear benefits over conventional wound healing strategies. Despite the wide-ranging effects ascribed to NPWT, the precise molecular mechanisms underlying the accelerated healing supported by NPWT remains poorly understood. Notably, cellular redox status-a product of the balance between cellular reactive oxygen species (ROS) production and anti-oxidant defense systems-plays an important role in wound healing and dysregulation of redox homeostasis has a profound effect on wound healing.
View Article and Find Full Text PDFNucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands.
View Article and Find Full Text PDFAntioxid Redox Signal
December 2018
Significance: There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression.
View Article and Find Full Text PDFSuperresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles.
View Article and Find Full Text PDFAdiponectin receptors (ADIPORs) are integral membrane proteins that control glucose and lipid metabolism by mediating, at least in part, a cellular ceramidase activity that catalyses the hydrolysis of ceramide to produce sphingosine and a free fatty acid (FFA). The crystal structures of the two receptor subtypes, ADIPOR1 and ADIPOR2, show a similar overall seven-transmembrane-domain architecture with large unoccupied cavities and a zinc binding site within the seven transmembrane domain. However, the molecular mechanisms by which ADIPORs function are not known.
View Article and Find Full Text PDFThirty percent of the human proteome is composed of membrane proteins that can perform a wide range of cellular functions and communications. They represent the core of modern medicine as the targets of about 50 % of all prescription pharmaceuticals. However, elucidating the structure of membrane proteins has represented a constant challenge, even in the modern era.
View Article and Find Full Text PDFThe creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. Here we have designed and constructed a rhombus-shaped DNA origami 'nanoactuator' that uses mechanical linkages to copy distance changes induced on one half ('the driver') to be propagated to the other half ('the mirror').
View Article and Find Full Text PDFAims: We recently reported the death-inducing activity of a small-molecule compound, C1, which triggered reactive oxygen species (ROS)-dependent autophagy-associated apoptosis in a variety of human cancer cell lines. In this study, we examine the ability of the compound to specifically target cancer cells harboring mutant KRAS with minimal activity against wild-type (WT) RAS-expressing cells.
Results: HCT116 cells expressing mutated KRAS are susceptible, while the WT-expressing HT29 cells are resistant.