Publications by authors named "Bellocchio S"

During inflammation, host- and microbial-derived proteases trigger the activation of protease-activated receptors (PARs), a family of G-protein-coupled receptors. We report here that activation of Toll-like receptors (TLRs) by fungi unmasks an essential and divergent role for PAR(1) and PAR(2) in downstream signaling and inflammation. TLRs activated PARs and triggered distinct signal transduction pathways involved in inflammation and immunity to Candida albicans and Aspergillus fumigatus.

View Article and Find Full Text PDF

The long pentraxin (PTX) 3 is produced by macrophages and myeloid dendritic cells in response to Toll-like receptor agonists and represents a nonredundant component of humoral innate immunity against selected pathogens. We report that, unexpectedly, PTX3 is stored in specific granules and undergoes release in response to microbial recognition and inflammatory signals. Released PTX3 can partially localize in neutrophil extracellular traps formed by extruded DNA.

View Article and Find Full Text PDF

The inherent resistance to diseases caused by Aspergillus fumigatus suggests the occurrence of regulatory mechanisms that provide the host with adequate defence without necessarily eliminating the fungus or causing unacceptable levels of host damage. Efficient responses to the fungus require different mechanisms of immunity. Dendritic cells (DCs) are uniquely able to decode the fungus-associated information and translate it into qualitatively different T helper (Th) and regulatory (Treg) cell responses.

View Article and Find Full Text PDF

Efficient response to Aspergillusfumigatus requires different mechanisms. Polymorphonuclear neutrophils (PMNs) are the predominant immune cells in the acute stage of most fungal infections and play a crucial role in determining the type of pathology associated with fungal infections in different clinical settings. Dendritic cells (DC) are able to decode the fungus-associated information and translate it into different T helper (Th) and regulatory (Treg) cell responses.

View Article and Find Full Text PDF

Reactivation of latent human cytomegalovirus (HCMV) following allogeneic transplantation is a major cause of morbidity and mortality and predisposes to severe complications, including superinfection by Aspergillus species (spp). Antimicrobial polypeptides, including defensins and mannan-binding lectin, are known to block viral fusion by cross-linking sugars on cell surface. Pentraxin 3 (PTX3), a member of the long pentraxin family, successfully restored antifungal immunity in experimental hematopoietic transplantation.

View Article and Find Full Text PDF

The inherent resistance to diseases caused by Aspergillus fumigatus suggests the occurrence of regulatory mechanisms that provide the host with adequate defense without necessarily eliminating the fungus or causing unacceptable levels of host damage. In this study, we show that a division of labor occurs between functionally distinct regulatory T cells (Treg) that are coordinately activated by a CD28/B-7-dependent costimulatory pathway after exposure of mice to Aspergillus conidia. Early in infection, inflammation is controlled by the expansion, activation and local recruitment of CD4+CD25+ Treg capable of suppressing neutrophils through the combined actions of IL-10 and CTLA-4 on indoleamine 2,3-dioxygenase.

View Article and Find Full Text PDF

Immunological features of GM-490 cells, a new blood cell line from a patient with acute lymphoblastic leukemia, included lack of CD34, CD38, CD45, CD14, HLA-DR, and lymphoid and myeloid markers and expression of CD29, CD36, CD44, CD54, CD71, CD105, and CD133. Molecular analysis indicated CD45 gene expression was absent but CD34 mRNA was present. GM-490 cells constitutively produced fibronectin (FN), type III and traces of type I collagen, collagenases, glycosaminoglycans (GAG) and biglycan and betaglycan proteoglycans (PG) as well as FGF2 and TGFbeta1.

View Article and Find Full Text PDF

DAP12 is an immunoreceptor tyrosine-based activation motif-bearing membrane adapter molecule expressed by different cell types. Although several receptors associate with DAP12 in murine dendritic cells (DC), the function of these receptors is as yet unknown. Here we report that splenic mature DC with DAP12 overexpression are characterized by an impaired tolerogenic potential.

View Article and Find Full Text PDF

Efficient responses to fungi require different mechanisms of immunity. Dendritic cells (DCs) are uniquely able to decode the fungus-associated information and translate it into qualitatively different T helper (Th) immune responses. Murine and human DCs phagocytose conidia and hyphae of Aspergillus fumigatus through distinct recognition receptors.

View Article and Find Full Text PDF

By mediating tryptophan catabolism, the enzyme indoleamine 2,3-dioxygenase (IDO) has a complex role in immunoregulation in infection, pregnancy, autoimmunity, transplantation, and neoplasia. We hypothesized that IDO might affect the outcome of the infection in mice infected with Candida albicans by virtue of its potent regulatory effects on inflammatory and T cell responses. IDO expression was examined in mice challenged with the fungus along with the consequences of its blockade by in vivo treatment with an enzyme inhibitor.

View Article and Find Full Text PDF

Objectives: Neutrophils play a crucial role in the control of the Aspergillus fumigatus infection and act in concert with antifungal drugs. This study was undertaken to obtain insights into the possible involvement of Toll-like receptors (TLRs) in the interaction of liposomal amphotericin B (L-AmB; AmBisome) with neutrophils in response to A. fumigatus.

View Article and Find Full Text PDF

Polymorphonuclear neutrophils (PMNs) are essential in initiation and execution of the acute inflammatory response and subsequent resolution of fungal infection. PMNs, however, may act as double-edged swords, as the excessive release of oxidants and proteases may be responsible for injury to organs and fungal sepsis. To identify regulatory mechanisms that may balance PMN-dependent protection and immunopathology in fungal infections, the involvement of different TLR-activation pathways was evaluated on human PMNs exposed to the fungus Aspergillus fumigatus.

View Article and Find Full Text PDF

As a fungal etiology has been proposed to underlie severe nasal polyposis, the present study was undertaken to assess local antifungal immune reactivity in nasal polyposis. For this purpose, microbial colonization, along with the pattern of T helper 1 (Th1)/Th2 cytokine production and Toll-like receptor (TLR) expression, was evaluated in patients with nasal symptoms and with and without polyposis and in healthy subjects. The results show that Th2 reactivity was a common finding for patients with nasal polyposis regardless of the presence of microbes.

View Article and Find Full Text PDF

Dendritic cells (DCs) are uniquely able to initiate and control the immune response to fungi. DCs function at three levels in the manipulation of the immune response to these pathogens. First, they mount an immediate or innate response to them, for example, by producing inflammatory mediators upon capture and phagocytosis; second, through these preceding innate functions, they decode the fungus-associated information and translate it in qualitatively different Th responses, and third, they are key in containing and dampening inflammatory responses by tolerization through the induction of regulatory T cells (Treg).

View Article and Find Full Text PDF

The collectin pentraxin 3 (PTX3) is an essential component of host resistance to pulmonary aspergillosis. Here we examined the protective effects of administration of PTX3 alone or together with deoxycholate amphotericin B (Fungizone) or liposomal amphotericin B (AmBisome) against invasive aspergillosis in a murine model of allogeneic bone marrow transplantation. PTX3, alone or in combination with the polyenes, was given intranasally or parenterally either before, in concomitance with, or after the intranasal infection with Aspergillus fumigatus conidia.

View Article and Find Full Text PDF

Efficient responses to the different forms of fungi require different mechanisms of immunity. Dendritic cells (DCs) are uniquely able to decode the fungus-associated information and translate it in qualitatively different T helper (Th) immune responses, in vitro and in vivo. DCs sense fungi in a morphotype-specific manner, through the engagement of distinct recognition receptors ultimately affecting cytokine production and costimulation.

View Article and Find Full Text PDF

Dendritic cells (DCs) show a remarkable functional plasticity in the recognition of Aspergillus fumigatus and orchestrate the antifungal immune resistance in the lungs. Here, we show that thymosin alpha 1, a naturally occurring thymic peptide, induces functional maturation and interleukin-12 production by fungus-pulsed DCs through the p38 mitogen-activated protein kinase/nuclear factor (NF)-kappaB-dependent pathway. This occurs by signaling through the myeloid differentiation factor 88-dependent pathway, involving distinct Toll-like receptors.

View Article and Find Full Text PDF

In vitro studies have indicated the importance of Toll-like receptor (TLR) signaling in response to the fungal pathogens Candida albicans and Aspergillus fumigatus. However, the functional consequences of the complex interplay between fungal morphogenesis and TLR signaling in vivo remain largely undefined. In this study we evaluate the impact of the IL-1R/TLR/myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway on the innate and adaptive Th immunities to C.

View Article and Find Full Text PDF

Dendritic cells (DCs) have a remarkable functional plasticity in response to conidia and hyphae of the fungus Aspergillus fumigatus. In the present study we sought to assess the capacity of DCs activated by live fungi or fungal RNA to generate antifungal immunity in vivo. We found that both human and murine DCs pulsed with live fungi or transfected with fungal RNA underwent functional maturation, as revealed by the up-regulated expression of histocompatibility class II antigen and costimulatory molecules and the production of interleukin 12 (IL-12) in response to conidia or conidial RNA and of IL-4/IL-10 in response to hyphae or hyphal RNA.

View Article and Find Full Text PDF

Background: Silicosis is mediated by macrophages, their soluble mediators, and extracellular matrix molecules. In this study, we investigated the effects of silica and/or hyaluronate (HA) on several alveolar macrophage responses.

Methods: We evaluated glycosaminoglycan (GAG) production by radiolabeled precursors, nitric oxide (NO) release by its oxidation product, phagocytic activity by Candida albicans internalization, and the secretion of two fibrogenic cytokines, tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta, by specific assays.

View Article and Find Full Text PDF

Background: We focused on the phenotype of non-mineralizing MG 63 and mineralizing TE 85 human osteosarcoma cells and investigated the role of bFGF in modulating their differentiative responses. Basic FGF expression and bFGF effects on osteocalcin, runt-related transcription factor-2 (RUNX2), matrix molecular production and bFGF receptors, were evaluated.

Materials And Methods: Osteocalcin and RUNX2 gene expression were studied by RT-PCR analysis.

View Article and Find Full Text PDF

In the Crouzon's syndrome the cranial morphogenic processes are altered due to the early fusion of cranial sutures. We analysed the phenotype of cultured fibroblasts from normal subjects and from Crouzon patients with a specific fibroblast growth factor receptor 2 mutation resulting in a Cys 342 Tyr substitution within the third immunoglobulin domain. Crouzon fibroblasts differed from normal fibroblasts in their extracellular matrix macromolecule accumulation.

View Article and Find Full Text PDF

The Crouzon syndrome, which is associated with fibroblast growth factor receptor (FGFR2) mutations, is characterized by premature fusion of cranial sutures. We used an in vitro model of cultured periosteal fibroblasts from normal subjects and from Crouzon patients with FGFR2 mutation. We analyzed the matrix turnover rate and the effects of adding FGF2 by evaluating fibronectin synthesis and the activity of some proteolytic enzymes.

View Article and Find Full Text PDF