Green tea consumption is associated with protective and preventive effects against various types of cancer. These effects are attributed to polyphenols, particularly epigallocatechin-3-gallate (EGCG). EGCG acts by directly inhibiting tumor suppressor protein p53.
View Article and Find Full Text PDFAllergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like (UD) are being explored. However, UD's mechanism of action remains unknown.
View Article and Find Full Text PDFIntroduction: Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4B and its membrane transporter (PDE6δ).
View Article and Find Full Text PDFFlavonoids, a phenolic compounds class widely distributed in the plant kingdom, have attracted much interest for their implications on several health and disease processes. Usually, the consumption of this type of compounds is approximately 1 g/d, primarily obtained from cereals, chocolate, and dry legumes ensuring its beneficial role in maintaining the homeostasis of the human body. In this context, in cancer disease prominent data points to the role of flavonoids as adjuvant treatment aimed at the regression of the disease.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease affecting older adults. AD pathogenesis involves the production of the highly neurotoxic amyloid-β peptide 1-42 (Aβ) from β-site amyloid precursor protein cleaving enzyme 1 (BACE1). The phosphorylation of BACE1 at Thr252 increases its enzymatic activity.
View Article and Find Full Text PDFEstrogen receptors (ERs) are nuclear factors that exist as two subtypes: ERα and ERβ. Among the different selective ERβ agonist ligands, the widely used ERβ-selective agonist DPN (diarylpropionitrile) is highlighted. Recent experimental and thermodynamic information between R-DPN and S-DPN enantiomers with ERβ is important for evaluating further the ability of MD simulations combined with end-point methods to reproduce experimental binding affinity and generate structural insight not provided through crystallographic data.
View Article and Find Full Text PDFAccording to WHO statistics, breast cancer (BC) disease represents about 2.3 million diagnosed and 685,000 deaths globally. Regarding histological classification of BC, the Estrogen (ER) and Progesterone (PR) receptors negative-expression cancer, named Triple-Negative BC (TNBC), represents the most aggressive type of this disease, making it a challenge for drug discovery.
View Article and Find Full Text PDFBecause of the high economic cost of exploring the experimental impact of mutations occurring in kinase proteins, computational approaches have been employed as alternative methods for evaluating the structural and energetic aspects of kinase mutations. Among the main computational methods used to explore the affinity linked to kinase mutations are docking procedures and molecular dynamics (MD) simulations combined with end-point methods or alchemical methods. Although it is known that end-point methods are not able to reproduce experimental binding free energy (Δ) values, it is also true that they are able to discriminate between a better or a worse ligand through the estimation of Δ.
View Article and Find Full Text PDFChem Biodivers
July 2023
Antiviral resistance has turned into a world concern nowadays. Influenza A H1N1 emerged as a problem at the world level due to the neuraminidase (NA) mutations. The NA mutants conferred resistance to oseltamivir and zanamivir.
View Article and Find Full Text PDFThe Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes).
View Article and Find Full Text PDFJ Biomol Struct Dyn
November 2023
The aryl hydrocarbon receptor (AhR) has broad biological functions when its ligands activate it; the non-binding interactions with AhR have not been fully elucidated due to the absence of a complete tridimensional (3D) structure. Therefore, utilization of the whole 3D structure from Homo sapiens AhR by in silico studies will allow us to better study and analyze the binding mode of its full and partial agonists, and antagonists, as well as its interaction with the HSP90 chaperone. The 3D AhR structure was obtained from I-TASSER and subjected to molecular dynamics (MD) simulations to obtain different structural conformations and determine the most populated AhR conformer by clustering analyses.
View Article and Find Full Text PDFDRD2 is an important receptor in the mediation of antipsychotic drugs but also in Parkinson medication, hyperprolactinemia, nausea and vomiting. Recently, crystallographic studies of the DRD2-risperidone complex have provided important information about risperidone recognition in wild-type and different stabilizing DRD2-risperidone residues. Using the crystallographic structure of the DRD2-risperidone complex as a starting point, we undertook molecular dynamics (MD) simulations to investigate the structural and thermodynamic basis of molecular recognition by risperidone at the ligand-binding sites of wild-type and mutant DRD2.
View Article and Find Full Text PDFSeveral properties of silymarin (SM) extract have been attributed to their three major flavonolignans (silybin, silychristin, and silydianin) and their 2,3-dehydro derivatives (2,3-dehydrosilybin, 2,3-dehydrosilychristin, and 2,3-dehydrosilydianin). Experimental findings have suggested that the antioxidative and protective activities of these compounds could be due to their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The mechanism by which SM compounds exert their effect has been suggested to be by disrupting the complex between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1).
View Article and Find Full Text PDFThe heterodimeric complex between retinoic X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most important and predominant regulatory systems, controlling lipid metabolism by binding to specific DNA promoter regions. X-ray and molecular dynamics (MD) simulations have revealed the average conformation adopted by the RXRα-PPARγ heterodimer bound to DNA, providing information about how multiple domains communicate to regulate receptor properties. However, knowledge of the energetic basis of the protein-ligand and protein-protein interactions is still lacking.
View Article and Find Full Text PDFMolecules
August 2022
In 40-50% of colorectal cancer (CRC) cases, K-Ras gene mutations occur, which induce the expression of the K-Ras4B oncogenic isoform. K-Ras4B is transported by phosphodiesterase-6δ (PDE6δ) to the plasma membrane, where the K-Ras4B-PDE6δ complex dissociates and K-Ras4B, coupled to the plasma membrane, activates signaling pathways that favor cancer aggressiveness. Thus, the inhibition of the K-Ras4B-PDE6δ dissociation using specific small molecules could be a new strategy for the treatment of patients with CRC.
View Article and Find Full Text PDFNaltrexone is a potent opioid antagonist with good blood-brain barrier permeability, targeting different endogenous opioid receptors, particularly the mu-opioid receptor (MOR). Therefore, it represents a promising candidate for drug development against drug addiction. However, the details of the molecular interactions of naltrexone and its derivatives with MOR are not fully understood, hindering ligand-based drug discovery.
View Article and Find Full Text PDFPharmaceuticals (Basel)
May 2022
Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression.
View Article and Find Full Text PDFLevodopa is a cornerstone in Parkinson's disease treatment. Beneficial effects are mainly by binding on D receptors. Docking simulations of a set of compounds including well-known D-ligands and a pool of Boron-Containing Compounds (BCC), particularly boroxazolidones with a tri/tetra-coordinated boron atom, were performed on the D Dopamine receptor (D2DR).
View Article and Find Full Text PDFHDAC6 has emerged as a molecular target to treat neurodegenerative disorders, due to its participation in protein aggregate degradation, oxidative stress process, mitochondrial transport, and axonal transport. Thus, in this work we have designed a set of 485 compounds with hydroxamic and bulky-hydrophobic moieties that may function as HDAC6 inhibitors with a neuroprotective effect. These compounds were filtered by their predicted ADMET properties and their affinity to HDAC6 demonstrated by molecular docking and molecular dynamics simulations.
View Article and Find Full Text PDFRepurposing studies have identified several FDA-approved compounds as potential inhibitors of the intracellular domain of epidermal growth factor receptor 1 (EGFR) and human epidermal receptor 2 (HER2). EGFR and HER2 represent important targets for the design of new drugs against different types of cancer, and recently, differences in affinity depending on active or inactive states of EGFR or HER2 have been identified. In this study, we first identified FDA-approved compounds with similar structures in the DrugBank to lapatinib and gefitinib, two known inhibitors of EGFR and HER2.
View Article and Find Full Text PDFSARS-CoV-2 is the causative agent of the ongoing viral pandemic of COVID-19. After the emergence of this virus, it became a global public health concern and quickly evolved into a pandemic. Mexico is currently in the third position in the number of deaths due to SARS-CoV-2.
View Article and Find Full Text PDFSeveral drugs are now being tested as possible therapies due to the necessity of treating SARS-CoV-2 infection. Although approved vaccines bring much hope, a vaccination program covering the entire global population will take a very long time, making the development of effective antiviral drugs an effective solution for the immediate treatment of this dangerous infection. Previous studies found that three natural compounds, namely, tannic acid, 3-isotheaflavin-3-gallate and theaflavin-3,3-digallate, are effective proteinase (3CL) inhibitors of SARS-CoV (IC <10 µM).
View Article and Find Full Text PDFJ Biomol Struct Dyn
November 2022
Ivermectin (IVM) is an FDA-approved drug that has shown antiviral activity against a wide variety of viruses in recent years. IVM inhibits the formation of the importin-α/β1 heterodimeric complex responsible for the translocation and replication of various viral species proteins. Also, IVM hampers SARS-CoV-2 replication in vitro; however, the molecular mechanism through which IVM inhibits SARS-CoV-2 is not well understood.
View Article and Find Full Text PDFThe Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic, resulting in an exponentially increased mortality globally and scientists all over the world are struggling to find suitable solutions to combat it. Multiple repurposed drugs have already been in several clinical trials or recently completed. However, none of them shows any promising effect in combating COVID-19.
View Article and Find Full Text PDFExperimental and theoretical studies have provided structural information regarding the shift from inactive to active EGFR, throughout which both conformations are linked via binding to specific tyrosine kinase inhibitors. For HER2, an intermediate active-inactive receptor conformation is present in the PDB, which has been co-crystallized with tak-285. The affinity of HER2 in monomeric state to tak-285 has been previously reported.
View Article and Find Full Text PDF