Publications by authors named "Belles X"

Gene duplication is a fundamental evolutionary process which provides opportunities to acquire new gene functions. In the case of the insulin receptors (InRs) in cockroaches and close-related insects, two successive duplications determined the occurrence of three InR genes: InR2, InR1 and InR3, the last two forming a sister cluster to InR2. The biological role of each of the gene duplicates and whether they resulted from neofunctionalization or subfunctionalization is still unclear.

View Article and Find Full Text PDF

Experiments exploring the role of juvenile hormone during the life cycle of firebrat insects provide clues about the evolution of metamorphosis.

View Article and Find Full Text PDF

The early embryo of the cockroach exhibits high expression. In general, E93 triggers adult morphogenesis during postembryonic development. Here we show that E93 is also crucial in early embryogenesis in the cockroach, as a significant number of E93-depleted embryos are unable to develop the germ band under maternal RNAi treatment targeting .

View Article and Find Full Text PDF

Present-day pterygote insects have two pairs of wings, one in the mesothorax (T2), the other in the metathorax (T3), and both have diverged in structure and function in different groups. Studies in endopterygote and paraneopteran species have shown that the gene () specifies the identity and wing structure in T3, whereas the gene () significantly contributes to forming modified T2 wings. We wondered whether these and mechanisms operate in the lineage of polyneopterans.

View Article and Find Full Text PDF

In hemimetabolan insects, the transcription factor Broad complex (Br-C) promotes wing growth and development during the nymphal period. We wondered whether Br-C could trigger the initiation of wing development, using the cockroach Blattella germanica as a model. We show that first instar nymphs have their unique identity of these three thoracic segments specified.

View Article and Find Full Text PDF

Current approaches for insect gene editing require microinjection of materials into early embryos. This severely limits the application of gene editing to a great number of insect species, especially to those whose reproduction systems preclude access to early embryos for injection. To overcome these limitations, we report a simple and accessible method for insect gene editing, termed "direct parental" CRISPR (DIPA-CRISPR).

View Article and Find Full Text PDF

In the Paleozoic era, more than 400 Ma, a number of insect groups continued molting after forming functional wings. Today, however, flying insects stop molting after metamorphosis when they become fully winged. The only exception is the mayflies (Paleoptera, Ephemeroptera), which molt in the subimago, a flying stage between the nymph and the adult.

View Article and Find Full Text PDF

The acquisition of wings has facilitated the massive evolutionary success of pterygotes (winged insects), which now make up nearly three-quarters of described metazoans. However, our understanding of how this crucial structure has evolved remains quite elusive. Historically, two ideas have dominated in the wing origin debate, one placing the origin in the dorsal body wall (tergum) and the other in the lateral pleural plates and the branching structures associated with these plates.

View Article and Find Full Text PDF

The influence of DNA methylation on gene behavior and its consequent phenotypic effects appear to be very important, but the details are not well understood. Insects offer a diversity of DNA methylation modes, making them an excellent lineage for comparative analyses. However, functional studies have tended to focus on quite specialized holometabolan species, such as wasps, bees, beetles, and flies.

View Article and Find Full Text PDF

Insect metamorphosis originated around the middle Devonian, associated with the innovation of the final molt; this occurs after histolysis of the prothoracic gland (PG; which produces the molting hormone) in the first days of adulthood. We previously hypothesized that transcription factor E93 is crucial in the emergence of metamorphosis, because it triggers metamorphosis in extant insects. This work on the cockroach reveals that E93 also plays a crucial role in the histolysis of PG, which fits the above hypothesis.

View Article and Find Full Text PDF

Insects are the only known animals in which sexual differentiation is controlled by sex-specific splicing. The transcription factor produces distinct male and female isoforms, which are both essential for sex-specific development. splicing depends on , which is also alternatively spliced such that functional Tra is only present in females.

View Article and Find Full Text PDF

The three modes of insect postembryonic development are ametaboly, hemimetaboly and holometaboly, the latter being considered the only significant metamorphosis mode. However, the emergence of hemimetaboly, with the genuine innovation of the final moult, represents the origin of insect metamorphosis and a necessary step in the evolution of holometaboly. Hemimetaboly derives from ametaboly and might have appeared as a consequence of wing emergence in Pterygota, in the early Devonian.

View Article and Find Full Text PDF

Insect metamorphosis is regulated by two main hormones: ecdysone (20E), which promotes molting, and juvenile hormone (JH), which inhibits adult morphogenesis. The transduction mechanisms for the respective hormonal signals include the transcription factors Krüppel homolog 1 (Kr-h1) and E93, which are JH- and 20E-dependent, respectively. Kr-h1 is the main effector of the antimetamorphic action of JH, while E93 is a key promoter of metamorphosis.

View Article and Find Full Text PDF

In the endopterygote Drosophila melanogaster, Zelda is an activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), making chromatin accessible for gene transcription. Zelda has been studied in other endopterygotes: Apis mellifera and Tribolium castaneum, and the paraneopteran Rhodnius prolixus.

View Article and Find Full Text PDF

Insect metamorphosis is triggered by a decrease in juvenile hormone (JH) in the final juvenile instar. What induces this decrease is therefore a relevant question. Working with the cockroach Blattella germanica, we found that myoglianin (Myo), a ligand in the TGF-β signaling pathway, is highly expressed in the corpora allata (CA, the JH-producing glands) and the prothoracic gland [(PG), which produce ecdysone] during the penultimate (fifth) nymphal instar (N5).

View Article and Find Full Text PDF

Dignomus francescovitalii sp. nov. is described and illustrated based on a well-preserved specimen from Eocene Baltic amber.

View Article and Find Full Text PDF

The success of neopteran insects, with 1 million species described, is associated with developmental innovations such as holometaboly and the evolution from short to long germband embryogenesis. To unveil the mechanisms underlining these innovations, we compared gene expression during the ontogeny of two extreme neopterans, the cockroach Blattella germanica (polyneopteran, hemimetabolan, and short germband species) and the fly Drosophila melanogaster (endopterygote, holometabolan, and long germband species). Results revealed that genes associated with metamorphosis are predominantly expressed in late nymphal stages in B.

View Article and Find Full Text PDF

The German cockroach, Blattella germanica, is a worldwide pest that infests buildings, including homes, restaurants, and hospitals, often living in unsanitary conditions. As a disease vector and producer of allergens, this species has major health and economic impacts on humans. Factors contributing to the success of the German cockroach include its resistance to a broad range of insecticides, immunity to many pathogens, and its ability, as an extreme generalist omnivore, to survive on most food sources.

View Article and Find Full Text PDF

The Piwi-interacting RNA (piRNA) system is an evolutionarily conserved mechanism involved in the control of transposable elements and maintenance of genomic stability, especially in germ line cells and in early embryo stages. However, relevant particularities, both in mechanism and function, exist across species among metazoans and even within the insect class. As a member of the scarcely studied hemimetabolan group, Blattella germanica can be a suitable reference model to study insect evolution.

View Article and Find Full Text PDF

The evolution of division of labor between sterile and fertile individuals represents one of the major transitions in biological complexity. A fascinating gradient in eusociality evolved among the ancient hemimetabolous insects, ranging from noneusocial cockroaches through the primitively social lower termites-where workers retain the ability to reproduce-to the higher termites, characterized by lifetime commitment to worker sterility. Juvenile hormone (JH) is a prime candidate for the regulation of reproductive division of labor in termites, as it plays a key role in insect postembryonic development and reproduction.

View Article and Find Full Text PDF

RNA interference (RNAi) has been widely applied for uncovering the biological functions of numerous genes, and has been envisaged as a pest control tool operating by disruption of essential gene expression. Although different methods, such as injection, feeding, and soaking, have been reported for successful delivery of double-stranded RNA (dsRNA), the efficiency of RNAi through oral delivery of dsRNA is highly variable among different insect groups. The German cockroach, Blattella germanica, is highly sensitive to the injection of dsRNA, as shown by many studies published previously.

View Article and Find Full Text PDF
Article Synopsis
  • Eusocial termites evolved from cockroaches around 150 million years ago, earlier than bees and ants, with their genomes showing significant differences from these Hymenoptera.
  • Scientists analyzed the genomes of the German cockroach and the drywood termite to uncover genes related to pheromone communication and caste determination, which are vital for their social structures.
  • The findings reveal that while termites and Hymenoptera share some evolutionary mechanisms for eusociality, they have developed unique solutions, illustrating an example of convergence in complex biological evolution.
View Article and Find Full Text PDF

The role of juvenile hormone (JH) in insect embryos is far from understood, especially in short germ-band hemimetabolan species. To shed light on this issue, we depleted the mRNA levels of Krüppel homolog 1, Methoprene-tolerant and JH acid -methyltransferase, key elements of JH signaling, in embryos of the short germ-band hemimetabolan species This precluded the formation of the germ-band anlage in a group of embryos. Hatchability was also reduced, which might have been caused by premature upregulation of laccase 2, a promoter of cuticle tanning.

View Article and Find Full Text PDF