Publications by authors named "Bellazzini R"

Article Synopsis
  • The Milky Way's center contains a dormant black hole, Sagittarius A (Sgr A), with a mass of about 4 million solar masses and low luminosity compared to active galactic nuclei.
  • Researchers have studied X-ray reflections from surrounding dense gas to investigate Sgr A's past activity, suggesting it flared up significantly in the past.
  • Observations from the Imaging X-ray Polarimetry Explorer revealed a 31% polarization degree in X-rays, indicating Sgr A was much more active around 200 years ago, with luminosity similar to that of a Seyfert galaxy.
View Article and Find Full Text PDF

Pulsar wind nebulae are formed when outflows of relativistic electrons and positrons hit the surrounding supernova remnant or interstellar medium at a shock front. The Vela pulsar wind nebula is powered by a young pulsar (B0833-45, aged 11,000 years) and located inside an extended structure called Vela X, which is itself inside the supernova remnant. Previous X-ray observations revealed two prominent arcs that are bisected by a jet and counter jet.

View Article and Find Full Text PDF

Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets.

View Article and Find Full Text PDF

A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray-emitting region.

View Article and Find Full Text PDF

Magnetars are neutron stars with ultrastrong magnetic fields, which can be observed in x-rays. Polarization measurements could provide information on their magnetic fields and surface properties. We observed polarized x-rays from the magnetar 4U 0142+61 using the Imaging X-ray Polarimetry Explorer and found a linear polarization degree of 13.

View Article and Find Full Text PDF

The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi -large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products.

View Article and Find Full Text PDF

We use joint observations by the X-ray Telescope (XRT) and the Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by LAT. Joint broadband spectral modeling of XRT and LAT data reveal that LAT non-detections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold.

View Article and Find Full Text PDF

Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data.

View Article and Find Full Text PDF

The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction.

View Article and Find Full Text PDF

We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12}  GeV^{-1} for ALP masses 0.5≲m_{a}≲5  neV at 95% confidence.

View Article and Find Full Text PDF

Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector.

Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher.

View Article and Find Full Text PDF

The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars.

View Article and Find Full Text PDF

We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface.

View Article and Find Full Text PDF

The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4.

View Article and Find Full Text PDF

The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs.

View Article and Find Full Text PDF

Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • Recent measurements from ATIC-2, CREAM, and PAMELA have revealed unexpected patterns in cosmic-ray proton and helium spectra, showing hardening above several hundred GeV and a gradual softening below this range.
  • The findings suggest a harder spectrum for helium compared to protons, which may provide insights into the origins of high-energy cosmic rays.
  • Analysis using Fermi Large Area Telescope data indicates that both single and broken power law models fit the local proton spectrum well, with indices around 2.68 and 2.61 for energies above 200 GeV.
View Article and Find Full Text PDF

Observations of occultations of bright -ray sources by the Sun may reveal predicted pair halos around blazars andor new physics, such as, e.g., hypothetical light dark matter particles-axions.

View Article and Find Full Text PDF

The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

View Article and Find Full Text PDF

Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date.

View Article and Find Full Text PDF

Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays.

View Article and Find Full Text PDF

The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ∼ 1.

View Article and Find Full Text PDF

Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.

View Article and Find Full Text PDF

We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results.

View Article and Find Full Text PDF

Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.

View Article and Find Full Text PDF