Publications by authors named "Bellamy V"

Background: There is increased evidence that the effects of stem cells can mostly be duplicated by administration of their secretome which might streamline the translation towards the clinics.

Methods: The 12-patient SECRET-HF phase 1 trial has thus been designed to determine the feasibility and safety of repeated intravenous injections of the extracellular vesicle (EV)-enriched secretome of cardiovascular progenitor cells differentiated from pluripotent stem cells in severely symptomatic patients with drug-refractory left ventricular (LV) dysfunction secondary to non-ischemic dilated cardiomyopathy. Here we report the case of the first treated patient (baseline NYHA class III; LV Ejection Fraction:25%) in whom a dose of 20 × 10 particles/kg was intravenously infused three times three weeks apart.

View Article and Find Full Text PDF

Constraints in the care of vulnerable elderly people are part of the daily life of services. This practice must not avoid multidisciplinary reflection by preserving the autonomy of patients' decisions despite cognitive disorders. The search for consent and reasons for refusing care must be the leitmotif and coercion the exception and must be supported.

View Article and Find Full Text PDF

Background: Current treatments of chemotherapy-induced cardiomyopathy (CCM) are of limited efficacy. We assessed whether repeated intravenous injections of human extracellular vesicles from cardiac progenitor cells (EV-CPC) could represent a new therapeutic option and whether EV manufacturing according to a Good Manufacturing Practices (GMP)-compatible process did not impair their bioactivity.

Methods: Immuno-competent mice received intra-peritoneal injections (IP) of doxorubicin (DOX) (4 mg/kg each; cumulative dose: 12 mg/kg) and were then intravenously (IV) injected three times with EV-CPC (total dose: 30 billion).

View Article and Find Full Text PDF

Extracellular vesicles (EV) are increasingly recognized as a therapeutic option in heart failure. They are usually administered by direct intramyocardial injections with the caveat of a rapid wash-out from the myocardium which might weaken their therapeutic efficacy. To improve their delivery in the failing myocardium, we designed a system consisting of loading EV into a clinical-grade hyaluronic acid (HA) biomaterial.

View Article and Find Full Text PDF

Background: The first COVID-19 wave started in February 2020 in France. The influx of patients requiring emergency care and high-level technicity led healthcare professionals to fear saturation of available care. In that context, the multidisciplinary thics-upport ell (EST) was created to help medical teams consider the decisions that could potentially be sources of ethical dilemmas.

View Article and Find Full Text PDF

Critical limb ischemia (CLI) is a severe disease which affects about 2 million people in the US. Its prevalence is assessed at 800/100,000 population. However, no reliable tools are currently available to assess perfusion defects at the muscle tissue level.

View Article and Find Full Text PDF

Extracellular vesicles (EV) mediate the therapeutic effects of stem cells but it is unclear whether this involves cardiac regeneration mediated by endogenous cardiomyocyte proliferation. Bi-transgenic MerCreMer/ZEG (n = 15/group) and Mosaic Analysis With Double Markers (MADM; n = 6/group) mouse models underwent permanent coronary artery ligation and received, 3 weeks later, 10 billion EV (from human iPS-derived cardiovascular progenitor cells [CPC]), or saline, injected percutaneously under echo guidance in the peri-infarcted myocardium. Endogenous cardiomyocyte proliferation was tracked by EdU labeling and biphoton microscopy.

View Article and Find Full Text PDF

Cell therapy to restore cardiac function in chronic heart failure has been extensively studied. However, its therapeutic value is limited due to poor cell engraftment and survival and the therapeutic outcomes have been attributed to paracrine secretions such as extracellular vesicles (EV). The direct use of EV is an attractive therapeutic strategy and it has been shown that the kinetics of delivery of the EV to the targeted tissue may impact the outcomes.

View Article and Find Full Text PDF

Aims: The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation.

Methods And Results: Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D.

View Article and Find Full Text PDF

Aims: We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act.

Methods And Results: The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy.

View Article and Find Full Text PDF

Background: In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells.

Objectives: This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction.

Methods: Six patients (median age 66.

View Article and Find Full Text PDF

Objective: Various animal models of critical limb ischemia have been developed in the past. However, there is no animal model that can undergo endovascular treatment, while providing reproducible true critical limb ischemia with arterial ulcers and rest pain. We evaluated the efficacy of a new model of rabbit hindlimb ischemia created through a percutaneous approach using embolization with calibrated particles.

View Article and Find Full Text PDF

Background: Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways.

View Article and Find Full Text PDF

Systemic arterial blood pressure (BP) is one of the most important parameters of the cardiovascular system. An oscillometric NIBP monitor was specifically designed to measure oscillometric pulsations and mean arterial pressure (MAP) during inflation and deflation of the cuff. Nineteen healthy young (age 23.

View Article and Find Full Text PDF

Objective: To develop a rabbit model of closed-chest catheter-induced myocardial infarction. Background. Limitations of rodent and large animal models justify the search for clinically relevant alternatives.

View Article and Find Full Text PDF

Implantation of embryonic stem cells (ESCs) and their differentiated derivatives into allogeneic hosts triggers an immune response that represents a hurdle to clinical application. We established in autoimmunity and in transplantation that CD3 antibody therapy induces a state of immune tolerance. Promising results have been obtained with CD3 antibodies in the clinic.

View Article and Find Full Text PDF

Aims: Comparative studies suggest that stem cells committed to a cardiac lineage are more effective for improving heart function than those featuring an extra-cardiac phenotype. We have therefore developed a population of human embryonic stem cell (ESC)-derived cardiac progenitor cells.

Methods And Results: Undifferentiated human ESCs (I6 line) were amplified and cardiac-committed by exposure to bone morphogenetic protein-2 and a fibroblast growth factor receptor inhibitor.

View Article and Find Full Text PDF

As part of a program targeted at developing a resorbable valved tube for replacement of the right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], polyhydroxyalkanoate (the poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [PHBVV]), and polydioxanone [PDO]) and two biofunctionalization techniques (using adipose-derived stem cells [ADSCs] or the arginine-glycine-aspartate [RGD] peptide) in a rat model of partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial replacement of the IVC with an acellular electrospun PDO, PU, or PHBVV patch, and 31 nude rats subsequently underwent the same procedure using a PDO patch biofunctionalized either by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), histology, immunohistochemistry [against markers of vascular cells (von Willebrand factor [vWF], smooth muscle actin [SMA]), and macrophages ([ED1 and ED2] immunostaining)], and enzyme-linked immunosorbent assay (ELISA; for the expression of various cytokines and inducible NO synthase).

View Article and Find Full Text PDF

Background: Cardiac-committed cells and biomimetic scaffolds independently improve the therapeutic efficacy of stem cells. In this study we tested the long-term effects of their combination.

Methods: Eighty immune-deficient rats underwent permanent coronary artery ligation.

View Article and Find Full Text PDF

Aim: There is now compelling evidence that cells committed to a cardiac lineage are most effective for improving the function of infarcted hearts. This has been confirmed by our pre-clinical studies entailing transplantation of human embryonic stem cell (hESC)-derived cardiac progenitors in rat and non-human primate models of myocardial infarction. These data have paved the way for a translational programme aimed at a phase I clinical trial.

View Article and Find Full Text PDF

Aims: Few studies have assessed the effects of cell therapy in non-ischaemic cardiomyopathies which, however, contribute to a large number of cardiac failures. Assuming that such conditions are best suited for a global delivery of cells, we assessed the effects of epicardially delivered adipose tissue-derived stroma cell (ADSC) sheets in a mouse model of dilated cardiomyopathy based on cardiac-specific and tamoxifen-inducible invalidation of serum response factor.

Methods And Results: Three weeks after tamoxifen administration, the function of the left ventricle (LV) was assessed by echocardiography.

View Article and Find Full Text PDF

Both enzymatic dissociation of cells prior to needle-based injections and poor vascularization of myocardial infarct areas are two important contributors to cell death and impede the efficacy of cardiac cell therapy. Because these limitations could be overcome by scaffolds ensuring cell cohesiveness and codelivery of angiogenic cells, we used a chronic rat model of myocardial infarction to assess the long-term (6 months) effects of the epicardial delivery of a composite collagen-based patch harboring both cardiomyogenesis-targeted human embryonic SSEA-1(+) (stem cell-derived stage-specific embryonic antigen-1 positive) cardiovascular progenitors and autologous (rat) adipose tissue-derived angiogenesis-targeted stromal cells (n = 27). Cell-free patches served as controls (n = 28).

View Article and Find Full Text PDF

Therapeutic intracavitary stem cell infusion currently suffers from poor myocardial homing. We examined whether cardiac cell retention could be enhanced by magnetic targeting of endothelial progenitor cells (EPCs) loaded with iron oxide nanoparticles. EPCs were magnetically labeled with citrate-coated iron oxide nanoparticles.

View Article and Find Full Text PDF

Transplantation of allogeneic human embryonic stem cell-derived cardiac progenitors triggers an immune response. We assessed whether this response could be modulated by the concomitant use of adipose-derived stromal cells (ADSC). Peripheral blood mononuclear cells were collected from 40 patients with coronary artery disease (CAD) and nine healthy controls.

View Article and Find Full Text PDF

Aims: Intramyocardial injections of cells can damage tissue and enhance dissociation-induced cell death. We assessed whether epicardial delivery of cell sheets could overcome these issues in a rat model of chronic myocardial infarction.

Methods And Results: Eighty-two rats that had undergone coronary ligation and simultaneous harvest of fat tissue to yield the adipose-derived stromal cell (ADSC) fraction were randomized 1 month after infarction to receive injections of either control medium (n= 24) or 10 × 10(6) autologous ADSC (n= 37) or the epicardial deposit, onto the infarcted area, of a trilayered ADSC sheet (10 × 10(6), n= 21) prepared by culturing cells on temperature-sensitive dishes.

View Article and Find Full Text PDF