Publications by authors named "Bella Lake"

Quantum spin liquids (QSLs) are novel phases of matter which remain quantum disordered even at the lowest temperature. They are characterized by emergent gauge fields and fractionalized quasiparticles. Here we show that the sub-kelvin thermal transport of the three-dimensional S=1/2 hyperhyperkagome quantum magnet PbCuTe_{2}O_{6} is governed by a sizeable charge-neutral fermionic contribution which is compatible with the itinerant fractionalized excitations of a spinon Fermi surface.

View Article and Find Full Text PDF

Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits.  The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi Te is, however, antiferromagnetic with 25 K Néel temperature and is strongly n-doped.

View Article and Find Full Text PDF

The quantum spin liquid is a highly entangled magnetic state characterized by the absence of static magnetism in its ground state. Instead, the spins fluctuate in a highly correlated way down to the lowest temperatures. Quantum spin liquids are very rare and are confined to a few specific cases where the interactions between the magnetic ions cannot be simultaneously satisfied (known as frustration).

View Article and Find Full Text PDF

Almost a century ago, string states-complex bound states of magnetic excitations-were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCoVO in strong longitudinal magnetic fields.

View Article and Find Full Text PDF

A detailed diffraction study of CaCrO is presented which adds significant new insights into the structural and magnetic properties of this compound. A new crystal structure type was used where the a and b axes are doubled compared to previous models providing a more plausible structure where all crystallographic sites are fully occupied. The presence of two different valences of chromium was verified and the locations of the magnetic Cr and non-magnetic Cr ions were identified.

View Article and Find Full Text PDF

The spin dynamics and magnetic excitations of the slightly distorted triangular s = 3/2 system α-CaCr (2)O (4) are investigated by means of Raman spectroscopy and electron spin resonance (ESR) to elucidate its peculiar magnetic properties. Two-magnon excitations in circular RL symmetry show a multi-maximum structure with a dominant spectral weight at low energies. The temperature dependence of the ESR linewidth is described by a critical broadening ΔH(pp)(T) is proportional to (T-T(N ))(-p) with the exponent p = 0.

View Article and Find Full Text PDF

Quantum effects dominate the behaviour of many diverse materials. Of particular current interest are those systems in the vicinity of a quantum critical point (QCP). Their physical properties are predicted to reflect those of the nearby QCP with universal features independent of the microscopic details.

View Article and Find Full Text PDF