Publications by authors named "Belkacem Messaoudi"

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered.

View Article and Find Full Text PDF

Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic.

View Article and Find Full Text PDF

In fear conditioning, where a conditioned stimulus predicts the arrival of an aversive stimulus, the animal encodes the time interval between the two stimuli. Here we monitored respiration to visualize anticipatory behavioral responses in an odor fear conditioning in rats, while recording theta (5-15 Hz) and gamma (40-80 Hz) brain oscillatory activities in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), dorsomedial striatum (DMS) and olfactory piriform cortex (PIR). We investigated the temporal patterns of respiration frequency and of theta and gamma activity power during the odor-shock interval, comparing two interval durations.

View Article and Find Full Text PDF

Beta rhythm (15-30 Hz) is a major candidate underlying long-range communication in the brain. In olfactory tasks, beta activity is strongly modulated by learning but its condition of expression and the network(s) responsible for its generation are unclear. Here we analyzed the emergence of beta activity in local field potentials recorded from olfactory, sensorimotor and limbic structures of rats performing an olfactory task.

View Article and Find Full Text PDF

Objective: Modern neuroscience research requires electrophysiological recording of local field potentials (LFPs) in moving animals. Wireless transmission has the advantage of removing the wires between the animal and the recording equipment but is hampered by the large number of data to be sent at a relatively high rate.

Approach: To reduce transmission bandwidth, we propose an encoder/decoder scheme based on adaptive non-uniform quantization.

View Article and Find Full Text PDF

Active sampling of olfactory environment consists of sniffing in rodents. The importance of sniffing dynamics is well established at the neuronal and behavioral levels. Patterns of sniffing have been shown to be modulated by the physicochemical properties of odorants, particularly concentration and sorption.

View Article and Find Full Text PDF

In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places.

View Article and Find Full Text PDF

Olfaction is determinant for the organization of rodent behavior. In a feeding context, rodents must quickly discriminate whether a nutrient can be ingested or whether it represents a potential danger to them. To understand the learning processes that support food choice, aversive olfactory learning and flavor appetitive learning have been extensively studied.

View Article and Find Full Text PDF

A growing body of evidence suggests that sniffing is not only the mode of delivery for odorant molecules but also contributes to olfactory perception. However, the precise role of sniffing variations remains unknown. The zonation hypothesis suggests that animals use sniffing variations to optimize the deposition of odorant molecules on the most receptive areas of the olfactory epithelium (OE).

View Article and Find Full Text PDF

Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain.

View Article and Find Full Text PDF

Background: A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSOs) and respiration-related discharge activities under various afferent input conditions and cellular excitability states.

View Article and Find Full Text PDF

In animals, emotional memory is classically assessed through pavlovian fear conditioning in which a neutral novel stimulus (conditioned stimulus) is paired with an aversive unconditioned stimulus. After conditioning, the conditioned stimulus elicits a fear response characterized by a wide range of behavioral and physiological responses. Despite the existence of this large repertoire of responses, freezing behavior is often the sole parameter used for quantifying fear response, thus limiting emotional memory appraisal to this unique index.

View Article and Find Full Text PDF

Background: The impact of respiratory dynamics on odor response has been poorly studied at the olfactory bulb level. However, it has been shown that sniffing in the behaving rodent is highly dynamic and varies both in frequency and flow rate. Bulbar odor response could vary with these sniffing parameter variations.

View Article and Find Full Text PDF

Recent findings have revealed the importance of orthonasal and retronasal olfaction in food memory, especially in conditioned odor aversion (COA); however, little is known about the dynamics of the cerebral circuit involved in the recognition of an odor as a toxic food signal and whether the activated network depends on the way (orthonasal vs retronasal) the odor was first experienced. In this study, we mapped the modulations of odor-induced oscillatory activities through COA learning using multisite recordings of local field potentials in behaving rats. During conditioning, orthonasal odor alone or associated with ingested odor was paired with immediate illness.

View Article and Find Full Text PDF

The present paper describes a behavioral setup, designed and built in our laboratory, allowing the systematic and automatic recording of performances in a large number of olfactory behavioral tests. This computerized monitoring system has the capability of measuring different aspects of olfactory function in mice using different paradigms including threshold evaluation, generalization tasks, habituation/dishabituation, olfactory associative learning, short-term olfactory memory with or without a spatial component, and olfactory preferences. In this paper, we first describe the hole-board apparatus and its software and then give the experimental results obtained using this system.

View Article and Find Full Text PDF

Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely olfactory cortical areas.

View Article and Find Full Text PDF

The role of odors in food memory formation, especially for aversions, has long been considered secondary to taste. However, the importance of odor ingestion in conditioned odor aversion (COA) has recently challenged this assumption (B. M.

View Article and Find Full Text PDF

In trained behaving rats, the expression of a prominent beta oscillatory activity in the olfactory system was previously identified as a correlate of odour recognition. The aim of the present study was to assess the putative role of a functional coupling between the olfactory bulb (OB) and higher structures in this activity. We performed a unilateral inactivation of the medial part of the olfactory peduncle by lidocaine infusion.

View Article and Find Full Text PDF

In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals.

View Article and Find Full Text PDF

The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of plasticity in the olfactory pathway. Training consisted of a single training session including six pairings of an odor CS with a mild foot-shock unconditioned stimulus (US).

View Article and Find Full Text PDF

In the first relay of information processing, the olfactory bulb (OB), odors are known to generate specific spatial patterns of activity. Recently, in freely behaving rats, we demonstrated that learning modulated oscillatory activity in local field potential (LFP), in response to odors, in both beta (15-40 Hz) and gamma (60-90 Hz) bands. The present study further characterized this odor-induced oscillatory activity with emphasis on its spatiotemporal distribution over the olfactory bulb and on its relationship with improvement of behavioral performances along training.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono5cqfph3ppk16m6a1mpb6c28cachhe3t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once