Publications by authors named "Belisa Parmeggiani"

Zika virus (ZIKV) is a neurotropic flavivirus that induces congenital Zika syndrome and neurodevelopmental disorders. Given that ZIKV can infect and replicate in neural cells, neurological complications in adult brain are also observed. Glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration.

View Article and Find Full Text PDF

Carnosine is composed of β-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats.

View Article and Find Full Text PDF

Ethylmalonic encephalopathy (EE) is a severe inherited metabolic disorder that causes tissue accumulation of hydrogen sulfide (sulfide) and thiosulfate in patients. Although symptoms are predominantly neurological, chronic hemorrhagic diarrhea associated with intestinal mucosa abnormalities is also commonly observed. Considering that the pathophysiology of intestinal alterations in EE is virtually unknown and that sulfide and thiosulfate are highly reactive molecules, the effects of these metabolites were investigated on bioenergetic production and transfer in the intestine of rats.

View Article and Find Full Text PDF

Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear.

View Article and Find Full Text PDF

Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective.

View Article and Find Full Text PDF

Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission.

View Article and Find Full Text PDF

Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response.

View Article and Find Full Text PDF

Barth syndrome (BTHS) and dilated cardiomyopathy with ataxia syndrome (DCMA) are biochemically characterized by high levels of 3-methylglutaric acid (MGA) in the urine and plasma of affected patients. Although cardiolipin abnormalities have been observed in these disorders, their pathophysiology is not fully established. We evaluated the effects of MGA administration on redox homeostasis and mitochondrial function in heart, as well as on vascular reactivity in aorta of Wistar rats without cardiolipin genetic deficiency.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena.

View Article and Find Full Text PDF

This study evaluated the effect of lacosamide (LCM) on biochemical and mitochondrial parameters after PTZ kindling in mice. Male mice were treated on alternative days for a period of 11 days with LCM (20, 30, or 40 mg/kg), saline, or diazepam (2 mg/kg), before PTZ administration (50 mg/kg). The hippocampi were collected to evaluate free radicals, the activities of superoxide dismutase (SOD), catalase (CAT), and the mitochondrial complexes I-III, II, and II-III, as well as Bcl-2 and cyclo-oxygenase-2 (COX-2) expressions.

View Article and Find Full Text PDF

Trichlorfon is an organophosphate insecticide that is widely used on fish farms to control parasitic infections. It has been detected in freshwater ecosystems as well as in fishery products. There is a growing body of evidence to suggest that certain feed additives may reduce or prevent pesticide-induced toxicity in fish.

View Article and Find Full Text PDF

High urinary excretion and tissue accumulation of 3-methylglutaric acid (MGA) are observed in patients affected by 3-hydroxy-3-methylglutaric (HMGA) and 3-methylglutaconic (MGTA) acidurias. The pathomechanisms underlying the hepatic dysfunction commonly observed in these disorders are not fully elucidated so that we investigated here the effects of intraperitoneal administration of MGA on redox homeostasis, mitochondrial bioenergetics, biogenesis and dynamics in rat liver. The effects of a pre-treatment with the protective compound bezafibrate (BEZ) were also determined.

View Article and Find Full Text PDF

3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a neurometabolic disorder characterized by predominant accumulation of 3-hydroxy-3-methylglutaric acid (HMG) in tissues and biological fluids. Patients often present in the first year of life with metabolic acidosis, non-ketotic hypoglycemia, hypotonia, lethargy, and coma. Since neurological symptoms may be triggered or worsened during episodes of metabolic decompensation, which are characterized by high urinary excretion of organic acids, this study investigated the effects of HMG intracerebroventricular administration on redox homeostasis, citric acid cycle enzyme activities, dynamics (mitochondrial fusion and fission), and endoplasmic reticulum (ER)-mitochondria crosstalk in the brain of neonatal rats euthanized 1 (short term) or 20 days (long term) after injection.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is a metabolic disorder accumulating phenylalanine (Phe) and its metabolites in plasma and tissues of the patients. Regardless of the mechanisms, which Phe causes brain impairment, are poorly understood, energy deficit may have linked to the neurotoxicity in PKU. It is widely recognized that creatine is involved in maintaining of cerebral energy homeostasis.

View Article and Find Full Text PDF

3-Methylglutaric acid (MGA) is an organic acid that accumulates in 3-methylglutaconic (MGTA) and 3-hydroxy-3-methylglutaric (HMGA) acidurias. Patients affected by these disorders present with neurological dysfunction that usually appears in the first years of life. In order to elucidate the pathomechanisms underlying the brain injury in these disorders, we evaluated the effects of MGA administration on redox homeostasis, mitochondrial respiratory chain activity, and biogenesis in the cerebral cortex of developing rats.

View Article and Find Full Text PDF

We report here the effects of hydrogen sulfide (sulfide), that accumulates in ETHE1 deficiency, in rat cerebellum. Sulfide impaired electron transfer and oxidative phosphorylation. Sulfide also induced mitochondrial swelling, and decreased ΔΨm and calcium retention capacity in cerebellum mitochondria, which were prevented by cyclosporine A (CsA) plus ADP, and ruthenium red, suggesting mitochondrial permeability transition (mPT) induction.

View Article and Find Full Text PDF

Sulfite oxidase, molybdenum cofactor, and ETHE1 deficiencies are autosomal recessive disorders that affect the metabolism of sulfur-containing amino acids. Patients with these disorders present severe neurological dysfunction and basal ganglia abnormalities, accompanied by high levels of thiosulfate in biological fluids and tissues. Aiming to better elucidate the pathophysiology of basal ganglia damage in these disorders, we evaluated the in vivo effects of thiosulfate administration on bioenergetics, oxidative stress, and neural damage in rat striatum.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the main aging-associated neurodegenerative disorder and is characterized by mitochondrial dysfunction, oxidative stress, synaptic failure, and cognitive decline. It has been a challenge to find disease course-modifying treatments. However, several studies demonstrated that regular physical activity and exercise are capable of promoting brain health by improving the cognitive function.

View Article and Find Full Text PDF

Aeromonas caviae is a Gram-negative bacterium rarely found in fish but it can be associated to high mortality of infected animals. The disease pathogenesis in fish associated to liver and kidney lesions directly linked to the initiation and progression of the disease remains poorly understood. Thus, the aim of this study was to evaluate whether A.

View Article and Find Full Text PDF

Non-ketotic hyperglycinemia (NKH) is a severe neurological disorder caused by defects in glycine (GLY) catabolism and characterized by a high cerebrospinal fluid/plasma GLY ratio. Treatment is often ineffective and limited to the control of symptoms and detoxification of GLY. In the present work, we investigated the in vivo effects of GLY intracerebroventricular administration on oxidative stress parameters in rat striatum, cerebral cortex, and hippocampus.

View Article and Find Full Text PDF

Inborn errors of metabolism (IEM) comprise a group of over 600 disorders, each with a specific metabolic impairment due to a genetic defect. Urea cycle disorders (UCD) are IEM that affect the nitrogen disposal system, leading to hyperammonemia and the accumulation of other toxic metabolites in tissues of affected patients. UCD arise from mutations in the genes coding any of the enzymes participating in the urea cycle, either directly or as regulators of this pathway, causing severe respiratory alkalosis.

View Article and Find Full Text PDF

It is becoming evident that bacterial infectious diseases affect brain energy metabolism, where alterations of enzymatic complexes of the mitochondrial respiratory chain and creatine kinase (CK) lead to an impairment of cerebral bioenergetics which contribute to disease pathogenesis in the central nervous system (CNS). Based on this evidence, the aim of this study was to evaluate whether alterations in the activity of complex IV of the respiratory chain and CK contribute to impairment of cerebral bioenergetics during Streptococcus agalactiae infection in silver catfish (Rhamdia quelen). The activity of complex IV of the respiratory chain in brain increased, while the CK activity decreased in infected animals compared to uninfected animals.

View Article and Find Full Text PDF

Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants.

View Article and Find Full Text PDF

Sulfite accumulates in tissues of patients affected by sulfite oxidase (SO) deficiency, a neurometabolic disease characterized by seizures and progressive encephalopathy, often resulting in early death. We investigated the effects of sulfite on mitochondrial function, antioxidant system, glial reactivity and neuronal damage in rat striatum, as well as the potential protective effects of bezafibrate on sulfite-induced toxicity. Thirty-day-old rats were intrastriatally administered with sulfite (2μmol) or NaCl (2μmol; control) and euthanized 30min after injection for evaluation of biochemical parameters and western blotting, or 7days after injection for analysis of glial reactivity and neuronal damage.

View Article and Find Full Text PDF

Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: