Background: Understanding vascular development and the key factors involved in regulating angiogenesis-the growth of new blood vessels from pre-existing vasculature-is crucial for developing therapeutic approaches to promote wound healing. Computational techniques offer valuable insights into improving angiogenic strategies, leading to enhanced tissue regeneration and improved outcomes for chronic wound healing. While chorioallantoic membrane (CAM) models are widely used for examining fundamental mechanisms in vascular development, they lack quantification of essential parameters such as blood flow rate, intravascular pressure, and changes in vessel diameter.
View Article and Find Full Text PDFThis study presents a comprehensive multiscale analysis of sandwich beams with a polyurethane foam (PUF) core, delivering a numerical comparison between finite element methods (FEMs) and a meshless method: the radial point interpolation method (RPIM). This work aims to combine RPIM with homogenisation techniques for multiscale analysis, being divided in two phases. In the first phase, bulk PUF material was modified by incorporating circular holes to create PUFs with varying volume fractions.
View Article and Find Full Text PDFThis study employs a meshless computational model to investigate the impacts of compression and traction on angiogenesis, exploring their effects on vascular endothelial growth factor (VEGF) diffusion and subsequent capillary network formation. Three distinct initial domain geometries were defined to simulate variations in endothelial cell sprouting and VEGF release. Compression and traction were applied, and the ensuing effects on VEGF diffusion coefficients were analysed.
View Article and Find Full Text PDFDental caries and dental restorations possess a long history and over the years, many materials and methods have been invented. In recent decades, modern techniques and materials have brought complexity to this issue, which has created the necessity to investigate more and more to achieve durability, consistency, proper mechanical properties, efficiency, beauty, good colour, and reduced costs and time. Combined with the recent advances in the medical field, mechanical engineering plays a significant role in this topic.
View Article and Find Full Text PDFCellular materials have a wide range of applications, including structural optimization and biomedical applications. Due to their porous topology, which promotes cell adhesion and proliferation, cellular materials are particularly suited for tissue engineering and the development of new structural solutions for biomechanical applications. Furthermore, cellular materials can be effective in adjusting mechanical properties, which is especially important in the design of implants where low stiffness and high strength are required to avoid stress shielding and promote bone growth.
View Article and Find Full Text PDFMultiscale techniques, namely homogenization, result in significant computational time savings in the analysis of complex structures such as lattice structures, as in many cases it is inefficient to model a periodic structure in full detail in its entire domain. The elastic and plastic properties of two TPMS-based cellular structures, the gyroid, and the primitive surface are studied in this work through numerical homogenization. The study enabled the development of material laws for the homogenized Young's modulus and homogenized yield stress, which correlated well with experimental data from the literature.
View Article and Find Full Text PDFBackground: Total knee arthroplasty (TKA) is one of the most frequently performed orthopedic procedures. The correct positioning and alignment of the components significantly affects prosthesis survival. Considering the current controversy regarding the target of postoperative alignment of TKA, this study evaluated the tension at tibial component interface using two numerical methods.
View Article and Find Full Text PDFCell proliferation is vital for the development and homeostasis of the human body. For such to occur, cells go through the cell cycle during which they replicate their genetic material and ultimately complete cellular division, when one cell divides into two new cells with equal genetic material. However, if there are some errors or abnormalities during the cell cycle that disrupt the balance between cell death and proliferation, severe problems can occur, such as tumour development, which is currently one of the leading causes of death in the world.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2022
Background And Objective: During cell proliferation, cells grow and divide in order to obtain two new genetically identical cells. Understanding this process is crucial to comprehend other biological processes. Computational models and algorithms have emerged to study this process and several examples can be found in the literature.
View Article and Find Full Text PDFAngiogenesis, the formation of new blood vessels from pre-existing ones, begins during embryonic development and continues throughout life. Sprouting angiogenesis is a well-defined process, being mainly influenced by vascular endothelial growth factor (VEGF). In this study, we propose a meshless-based model capable of mimicking the angiogenic response to several VEGF concentrations.
View Article and Find Full Text PDFBiomech Model Mechanobiol
August 2021
This work proposes a novel tissue-scale mechanobiological model of bone remodeling to study bone's adaptation to distinct loading conditions. The devised algorithm describes the mechanosensitivity of bone and its impact on bone cells' functioning through distinct signaling factors. In this study, remodeling is mechanically ruled by variations of the strain energy density (SED) of bone, which is determined by performing a linear elastostatic analysis combined with the finite element method.
View Article and Find Full Text PDFPurpose: Bone is a hierarchical material that can be characterized from the microscale to macroscale. Multiscale models make it possible to study bone remodeling, inducing bone adaptation by using information of bone multiple scales. This work proposes a computationally efficient homogenization methodology useful for multiscale analysis.
View Article and Find Full Text PDFBone remodeling is a highly complex process, in which bone cells interact and regulate bone's apparent density as a response to several external and internal stimuli. In this work, this process is numerically described using a novel 2D biomechanical model. Some of the new features in this model are (i) the mathematical parameters used to determine bone's apparent density and cellular density; (ii) an automatic boundary recognition step to spatially control bone remodeling and (iii) an approach to mimic the mechanical transduction to osteoclasts and osteoblasts.
View Article and Find Full Text PDFA functional vascular network is essential to the correct wound healing. In sprouting angiogenesis, vascular endothelial growth factor (VEGF) regulates the formation of new capillaries from pre-existing vessels. This is a very complex process and mathematical formulation permits to study angiogenesis using less time-consuming, reproducible and cheaper methodologies.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2020
Angiogenesis, the development of new blood capillaries, is crucial for the wound healing process. This biological process allows the proper blood supply to the tissue, essential for cell proliferation and viability. Several biological factors modulate angiogenesis, however the vascular endothelial growth factor (VEGF) is the main one.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2020
Bone is a complex hierarchical material that can be characterized from the microscale to macroscale. This work demonstrates the application of an enhanced homogenization methodology to the multiscale structural analysis of a femoral bone. The use of this homogenization technique allows to remove subjectivity and reduce the computational cost associated with the iterative process of creating a heterogeneous mesh.
View Article and Find Full Text PDFPurpose: Bone tissue is a dynamic tissue, possessing different functional requirements at different scales. This layered organization indicates the existence of a hierarchical structure, which can be characterized to distinguish macro-scale from micro-scale levels. Structurally, both scales can be linked by the use of classic multiscale homogenization techniques.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
June 2019
Bone remodeling remains a highly researched topic investigated by many strands of science. The main purpose of this work is formulating a new computational framework for biological simulation, extending the version of the bone remodeling model previously proposed by Komarova. Thus, considering only the biological aspect of the remodeling process, the action of osteoclasts and osteoblasts is taken into account as well as its impact on bone mass.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2019
In this work, an advanced discretization meshless technique is used to study the structural response of a human brain due to an impact load. The 2D and 3D brain geometrical models, and surrounding structures, were obtained through the processing of medical images, allowing to achieve a realistic geometry for the virtual model and to define the distribution of the mechanical properties accordingly with the medical images colour scale. Additionally, a set of essential and natural boundary conditions were assumed in order to reproduce a sudden impact force applied to the cranium.
View Article and Find Full Text PDFThe occurrence of wounds is a main health concern in Western society due to their high frequency and treatment cost. During wound healing, the formation of a functional blood vessel network through angiogenesis is an essential process. Angiogenesis allows the reestablishment of the normal blood flow, the sufficient exchange of oxygen and nutrients and the removal of metabolic waste, necessary for cell proliferation and viability.
View Article and Find Full Text PDFVertiginous symptoms are one of the most common symptoms in the world, therefore investing in new ways and therapies to avoid the sense of insecurity during the vertigo episodes is of great interest. The classical maneuvers used during vestibular rehabilitation consist in moving the head in specific ways, but it is not fully understood why those steps solve the problem. To better understand this mechanism, a three-dimensional computational model of the semicircular ducts of the inner ear was built using the finite element method, with the simulation of the fluid flow being obtained using particle methods.
View Article and Find Full Text PDFThis work has the objective to compare the mechanical behaviour of a brain impact using an alternative numerical meshless technique. Thus, a discrete geometrical model of a brain was constructed using medical images. This technique allows to achieve a discretization with realistic geometry, allowing to define locally the mechanical properties according to the medical images colour scale.
View Article and Find Full Text PDFPurpose: The vestibular system is the part of the inner ear responsible for balance. Vertigo and dizziness are generally caused by vestibular disorders and are very common symptoms in people over 60 years old. One of the most efficient treatments at the moment is vestibular rehabilitation, permitting to improve the symptoms.
View Article and Find Full Text PDFIn this work the maxillary central incisor is numerically analysed with an advance discretization technique--Natural Neighbour Radial Point Interpolation Method (NNRPIM). The NNRPIM permits to organically determine the nodal connectivity, which is essential to construct the interpolation functions. The NNRPIM procedure, based uniquely in the computational nodal mesh discretizing the problem domain, allows to obtain autonomously the required integration mesh, permitting to numerically integrate the differential equations ruling the studied physical phenomenon.
View Article and Find Full Text PDF