Publications by authors named "Belinda van der Westhuizen"

A series of Group 7 Fischer carbene complexes, [Cp(CO)2 Mn(I) =C(OEt)Ar] (Cp=cyclopentadienyl, Ar=Th=thienyl (1 a), Ar=Fu=furyl (2 a), Ar=Fc=ferrocenyl (3 a)) and biscarbene complexes, [Cp(CO)2 MnC(OEt)Ar'(OEt)CMn(CO)2 Cp] (Ar'=Th'=2,5-thienylene (1 b), Ar'=Fu'=2,5-furylene (2 b), Ar'=Fc'=1,1'-ferrocendiyl (3 b)) was synthesized and characterized. Chemical oxidation of [Cp(CO)2 MnC(OEt)Fc] (3 a) and isolation of the oxidised species [3 a][PF6 ] possessing a Mn(II) centre proved possible below -30 °C in dichloromethane solution. The ESR spectrum of the transiently stable radical cation, [3 a][PF6 ], confirmed the presence of a low-spin Mn(II) centre characterized by a rhombic g tensor (gx =1.

View Article and Find Full Text PDF

A series of ferrocenyl (Fc = ferrocenyl; fc = ferrocen-1,1'-diyl) and biferrocenyl (Bfc = 1',1″-biferrocenyl; bfc = 1',1″-biferrocen-1,1‴-diyl) mono- and biscarbene tungsten(0) complexes of the type [(CO)5W═C(OMe)R] (1, R = Fc; 3, R = Bfc) and [(CO)5W═C(OMe)-R'-(OMe)C═W(CO)5] (2, R' = fc; 4, R' = bfc) were synthesized according to the classical synthetic methodology by reacting W(CO)6 with LiR (R = Fc, fc, bfc), followed by a subsequent alkylation using methyl trifluoromethanesulfonate. Electrochemical investigations were carried out on these complexes to get a closer insight into the electronic properties of 1-4. The ferrocenyl and biferrocenyl moieties in 1-4 show reversible one-electron redox events.

View Article and Find Full Text PDF

The synthesis and structure of rare acyclic alkoxy- and aminocarbene complexes of gold(i) are reported, including a novel ferrocenophane dinuclear biscarbene complex. X-Ray diffraction analyses and DFT calculations reveal that these complexes are stabilized by genuine aurophilic interactions.

View Article and Find Full Text PDF

A series of ten ferrocenyl, furyl, and thienyl mono- and biscarbene chromium(0) complexes were synthesized and characterized spectroscopically and electrochemically. The single crystal structure of the biscarbene complex [(CO)5Cr═C(OEt)-Fu'-(OEt)C═Cr(CO)5] (4a) was determined: C20H12Cr2O13; triclinic; P1; a = 6.2838(5), b = 12.

View Article and Find Full Text PDF

A series of ferrocenyl and thienyl mono- and biscarbene chromium(0) complexes 1-6 were synthesised. The complexes were characterised both spectroscopically and electrochemically, and the single crystal X-ray structure of 3 was determined. Electrochemical measurements in CH2Cl2 revealed that the carbene double bond of 1-6 is reduced to an anion radical, (-)Cr-C˙ at formal reduction potentials <-1.

View Article and Find Full Text PDF

The title compound, (C(21)H(25)N(2))[ReO(4)], was formed as the unexpected product in an attempted synthesis of a rhenium(I)-N-heterocyclic carbene (NHC) complex. The compound has crystallographic mirror symmetry with both the cation and the tetrahedral anion located across a mirror plane. The cation and anion are linked by a C-H⋯O hydrogen bond.

View Article and Find Full Text PDF

Fischer carbene complexes of tungsten with substituents containing up to two additional different transition metals, with all the metals in electronic contact with the carbene carbon atom, were synthesised and studied both in solution and in the solid state. For the complexes of the type [W(CO)(5){C(OR')R}], the substituents chosen were heteroaromatic 2-benzo[b]thienyl (2-BT), or 2-BT π-bonded to a chromium tricarbonyl fragment ([Cr(CO)(3)(2-η(6)-BT)]) or ferrocenyl (Fc) as the R-substituent, while the OR'-substituent was systematically varied between an ethoxy or a titanoxy group, to yield the complexes 1b (R' = Et, R = 2-BT), 2b (R' = Et, R = [Cr(CO)(3)(2-η(6)-BT)]), 3b (R' = TiCp(2)Cl, R = 21-BT), 4b (R' = TiCp(2)Cl, R = [Cr(CO)(3)(2-η(6)-BT)]), 5b (R' = Et, R = Fc) and 6b (R' = TiCp(2)Cl, R = Fc). The structural features and their relevance to bonding in the multimetal carbene compounds of both these tungsten and the analogous chromium complexes were investigated as they represent indicators of possible reactivity sites in multimetal carbene assemblies.

View Article and Find Full Text PDF

The title compound, C(10)H(13)NO, was obtained as the unexpected, almost exclusive, product in the attempted synthesis of a manganese(I)-N-heterocyclic carbene (NHC) complex. The dihedral angle between the planes of the formamide moiety and the aryl ring is 68.06 (10)°.

View Article and Find Full Text PDF