Cytotoxic T lymphocytes (CTLs) are thought to arrive at target sites either via random search or following signals by other leukocytes. Here, we reveal independent emergent behaviour in CTL populations attacking tumour masses. Primary murine CTLs coordinate their migration in a process reminiscent of the swarming observed in neutrophils.
View Article and Find Full Text PDFChimeric Antigen Receptor (CAR) T-cell therapy, as an approved treatment option for patients with B cell malignancies, demonstrates that genetic modification of autologous immune cells is an effective anti-cancer regimen. Erythropoietin-producing Hepatocellular receptor tyrosine kinase class A2 (EphA2) is a tumour associated antigen expressed on a range of sarcomas, including paediatric osteosarcoma (OS) and Ewing sarcoma (ES). We tested human EphA2 directed CAR T cells for their capacity to target and kill human OS and ES tumour cells using in vitro and in vivo assays, demonstrating that EphA2 CAR T cells have potent anti-tumour efficacy in vitro and can eliminate established OS and ES tumours in vivo in a dose and delivery route dependent manner.
View Article and Find Full Text PDFAdeno-associated virus (AAV) vectors are quickly becoming the vectors of choice for therapeutic gene delivery. To date, hundreds of natural isolates and bioengineered variants have been reported. While factors such as high production titer and low immunoreactivity are important to consider, the ability to deliver the genetic payload (physical transduction) and to drive high transgene expression (functional transduction) remains the most important feature when selecting AAV variants for clinical applications.
View Article and Find Full Text PDFGene transfer targeting hematopoietic stem cells (HSC) in children has shown sustained therapeutic benefit in the treatment of genetic diseases affecting the immune system, most notably in severe combined immunodeficiencies affecting T-cell function. The HSC compartment has also been successfully targeted using gene transfer in children with genetic diseases affecting the central nervous system, such as metachromatic leukodystrophy and adrenoleukodystrophy. HSCs are also a target for genetic modification in strategies aiming to confer drug resistance to chemotherapy agents so as to reduce off-target toxicity, and to allow for chemotherapy dose escalation with the possibility of enhanced therapeutic benefit.
View Article and Find Full Text PDFBackground: The analysis of viral vector genomic integration sites is an important component in assessing the safety and efficiency of patient treatment using gene therapy. Alongside this clinical application, integration site identification is a key step in the genetic mapping of viral elements in mutagenesis screens that aim to elucidate gene function.
Results: We have developed a UNIX-based vector integration site analysis pipeline (Ub-ISAP) that utilises a UNIX-based workflow for automated integration site identification and annotation of both single and paired-end sequencing reads.
Background: Transplant tolerance has been achieved by mixed chimerism in animal models and in a limited number of kidney transplant patients. However, these mixed-chimerism strategies were limited either by loss of long-term mixed chimerism or risk of graft-versus-host disease (GVHD). Selective bone marrow (BM) engraftment using marrow protective strategies are currently reaching clinical use.
View Article and Find Full Text PDFUnequivocal demonstration of the therapeutic utility of γ-retroviral vectors for gene therapy applications targeting the hematopoietic system was accompanied by instances of insertional mutagenesis. These events stimulated the ongoing development of putatively safer integrating vector systems and analysis methods to characterize and compare integration site (IS) biosafety profiles. Continuing advances in next-generation sequencing technologies are driving the generation of ever-more complex IS datasets.
View Article and Find Full Text PDFCell replacement therapy using stem cell transplantation holds much promise in the field of regenerative medicine. In the area of hematopoietic stem cell transplantation, O(6)-methylguanine-DNA methyltransferase MGMT (P140K) gene-mediated drug resistance-based in vivo enrichment strategy of donor stem cells has been shown to achieve up to 75%-100% donor cell engraftment in the host's hematopoietic stem cell compartment following repeated rounds of selection. This strategy, however, has not been applied in any other organ system.
View Article and Find Full Text PDFBackground: Gene transfer of the P140K mutant of O6-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) provides a mechanism for drug resistance and the selective expansion of gene-modified cells in vivo. Possible clinical applications for this strategy include chemoprotection to allow dose escalation of alkylating chemotherapy, or combining MGMT(P140K) expression with a therapeutic gene in the treatment of genetic diseases. Our aim is to use MGMT(P140K)-driven in vivo selection to develop allogeneic micro-transplantation protocols that rely on post-engraftment selection to overcome the requirement for highly toxic pre-transplant conditioning, and to establish and maintain predictable levels of donor/recipient chimerism.
View Article and Find Full Text PDFObjective: To report the outcome of gene therapy in an infant with X-linked severe combined immunodeficiency (SCID-X1), which typically causes a lack of T and natural killer (NK) cells.
Design And Setting: Ex-vivo culture and gene transfer procedures were performed at The Children's Hospital at Westmead, Sydney, NSW, in March 2002. Follow-up to March 2005 (36 months) is available.