Background: Myelodysplastic neoplasms (MDS) are heterogeneous hematopoietic disorders characterized by ineffective hematopoiesis and genome instability. Mobilization of transposable elements (TEs) is an important source of genome instability leading to oncogenesis, whereas small PIWI-interacting RNAs (piRNAs) act as cellular suppressors of TEs. However, the roles of TEs and piRNAs in MDS remain unclear.
View Article and Find Full Text PDFPatients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level.
View Article and Find Full Text PDFBiomed Pharmacother
January 2024
Introduction: To date, no chemoresistance predictors are included in acute myeloid leukaemia (AML) prognostic scoring systems to distinguish responding and refractory AML patients prior to chemotherapy. ABC transporters have been described as altering AML chemosensitivity; however, a relevant study investigating their role at various molecular levels was lacking.
Methods: Gene expression, genetic variants, methylation and activity of ABCA2, ABCA5, ABCB1, ABCB6, ABCC1, ABCC3 and ABCG2 were analysed in AML blasts and healthy myeloblasts.
Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells.
View Article and Find Full Text PDFBackground: Hypoplastic myelodysplastic neoplasm (MDS-h) is a rare hematopoietic disorder characterized by peripheral cytopenia, hypoplasia (cellularity ≤ 25%) and dysplastic changes in the bone marrow. Compared to normo- /hypercellular MDS, in addition to hypocellularity, MDS-h patients have more profound neutropenia and thrombocytopenia, a lower percentage of blasts, and less frequent abnormal karyotype. It is difficult to distinguish MDS-h from aplastic anemia in differential diagnosis.
View Article and Find Full Text PDFObjective: Somatic mutations in UBA1 have recently been causally linked to a severe adult-onset inflammatory condition referred to as VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Ubiquitin-activating enzyme E1 (UBA-1) is of fundamental importance to the modulation of ubiquitin homeostasis and to the majority of downstream ubiquitylation-dependent cellular processes. Direct sequencing analysis of exon 3 containing the prevalent variants p.
View Article and Find Full Text PDFBACKGROUND: Risk stratification and therapeutic decision-making for myelodysplastic syndromes (MDS) are based on the International Prognostic Scoring System–Revised (IPSS-R), which considers hematologic parameters and cytogenetic abnormalities. Somatic gene mutations are not yet used in the risk stratification of patients with MDS. METHODS: To develop a clinical-molecular prognostic model (IPSS-Molecular [IPSS-M]), pretreatment diagnostic or peridiagnostic samples from 2957 patients with MDS were profiled for mutations in 152 genes.
View Article and Find Full Text PDFPatients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation was detected in 137 patients (64%).
View Article and Find Full Text PDFBackground/aim: Prediction of response to azacitidine (AZA) treatment is an important challenge in hematooncology. In addition to protein coding genes (PCGs), AZA efficiency is influenced by various noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and transposable elements (TEs).
Materials And Methods: RNA sequencing was performed in patients with myelodysplastic syndromes or acute myeloid leukemia before AZA treatment to assess contribution of ncRNAs to AZA mechanisms and propose novel disease prediction biomarkers.
Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS.
View Article and Find Full Text PDFTo better understand the molecular basis of resistance to azacitidine (AZA) therapy in myelodysplastic syndromes (MDS) and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), we performed RNA sequencing on pre-treatment CD34 hematopoietic stem/progenitor cells (HSPCs) isolated from 25 MDS/AML-MRC patients of the discovery cohort (10 AZA responders (RD), six stable disease, nine progressive disease (PD) during AZA therapy) and from eight controls. Eleven MDS/AML-MRC samples were also available for analysis of selected metabolites, along with 17 additional samples from an independent validation cohort. Except for two patients, the others did not carry isocitrate dehydrogenase (IDH)1/2 mutations.
View Article and Find Full Text PDFDeferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34 cells were assessed by whole-genome microarrays.
View Article and Find Full Text PDFBackground: myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder with an incompletely known pathogenesis. Long noncoding RNAs (lncRNAs) play multiple roles in hematopoiesis and represent a new class of biomarkers and therapeutic targets, but information on their roles in MDS is limited.
Aims: here, we aimed to characterize lncRNAs deregulated in MDS that may function in disease pathogenesis.
Tumor protein p53 (TP53) is the most frequently mutated gene in cancer. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease, rapid transformation to acute myeloid leukemia (AML), resistance to conventional therapies and dismal outcomes. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are hematopoietic stem cell disorders with large heterogeneity at the clinical and molecular levels. As diagnostic procedures shift from bone marrow biopsies towards less invasive techniques, circulating small noncoding RNAs (sncRNAs) have become of particular interest as potential novel noninvasive biomarkers of the disease. We aimed to characterize the expression profiles of circulating sncRNAs of MDS patients and to search for specific RNAs applicable as potential biomarkers.
View Article and Find Full Text PDFThe karyotype of bone-marrow cells at the time of diagnosis is one of the most important prognostic factors in patients with myelodysplastic syndromes (MDS). In some cases, the acquisition of additional genetic aberrations (clonal evolution [CE]) associated with clinical progression may occur during the disease. We analyzed a cohort of 469 MDS patients using a combination of molecular cytogenomic methods to identify cryptic aberrations and to assess their potential role in CE.
View Article and Find Full Text PDFBackground: We aimed to detect single nucleotide polymorphisms (SNPs) and mutations in DNA repair genes and their possible association with myelodysplastic syndrome (MDS).
Methods: Targeted enrichment resequencing of 84 DNA repair genes was initially performed on a screening cohort of MDS patients. Real-time polymerase chain reaction was used for genotyping selected SNPs in the validation cohort of patients.
The region contains a large miRNA cluster, the overexpression of which has previously been associated with myelodysplastic syndromes (MDS). To reveal whether this overexpression is epigenetically regulated, we performed an integrative analysis of miRNA/mRNA expression and DNA methylation of the regulatory sequences in the region (promoter of the gene) in CD34+ bone marrow cells from the patients with higher-risk MDS and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), before and during hypomethylating therapy with azacytidine (AZA). Before treatment, 50% of patients showed significant miRNA/mRNA overexpression in conjunction with a diagnosis of AML-MRC.
View Article and Find Full Text PDFThis article summarize molecular-genetic basis of hemoglobinopathies, their classification and phenotypic manifestations. The description of individual subgroups is supplemented with a case reports of patients diagnosed in the Czech population. This paper provides an overview of 14 types of α-thalassemic mutations, 34 β-thalassemic alleles, 4 δβ-thalassemic alleles and 22 hemoglobin variants identified in the Czech population in 876 persons from 579 families.
View Article and Find Full Text PDFBackground: Azacitidine (AZA) is a nucleoside analog used for treatment of myelodysplasia and the prediction of AZA responsiveness is important for the therapy management.
Methods: Using microarrays and reverse-transcription quantitative-PCR, we analyzed microRNA (miRNA) expression in bone marrow CD34+ cells of 27 patients with higher-risk myelodysplastic syndromes or acute myeloid leukemia with myelodysplasia-related changes before and during AZA treatment.
Results: At baseline, we found that future overall response rate was significantly higher in patients with upregulated miR-17-3p and downregulated miR-100-5p and miR-133b.