Unlabelled: STING has emerged in recent years as a key player in orchestrating innate immune responses to cytosolic DNA and RNA derived from pathogens. However, the regulation of STING still remains poorly defined. In the present study, we investigated the mechanism of the regulation of STING expression in relation to the RIG-I pathway.
View Article and Find Full Text PDFVesicular stomatitis virus (VSV) is an oncolytic virus that induces cancer cell death through activation of the apoptotic pathway. Intrinsic resistance to oncolysis is found in some cell lines and many primary tumors as a consequence of residual innate immunity to VSV. In resistant-tumor models, VSV oncolytic potential can be reversibly stimulated by combination with epigenetic modulators, such as the histone deacetylase inhibitor vorinostat.
View Article and Find Full Text PDFHuman T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia and HTLV-1-associated myelopathies. In addition to T cells, HTLV-1 infects cells of the myeloid lineage, which play critical roles in the host innate response to viral infection. Investigating the monocyte depletion observed during HTLV-1 infection, we discovered that primary human monocytes infected with HTLV-1 undergo abortive infection accompanied by apoptosis dependent on SAMHD1, a host restriction factor that hydrolyzes endogenous dNTPs to below the levels required for productive reverse transcription.
View Article and Find Full Text PDFMany primary cancers including chronic lymphocytic leukemia (CLL) are resistant to vesicular stomatitis virus (VSV)-induced oncolysis due to overexpression of the antiapoptotic and antiautophagic members of the B-cell lymphoma-2 (BCL-2) family. In the present study, we investigated the mechanisms of CLL cell death induced as a consequence of VSV infection in the presence of BCL-2 inhibitors, obatoclax, and ABT-737 in primary ex vivo CLL patient samples. Microarray analysis of primary CD19⁺ CD5⁺ CLL cells treated with obatoclax and VSV revealed changes in expression of genes regulating apoptosis, the mechanistic target of rapamycin (mTOR) pathway, and cellular metabolism.
View Article and Find Full Text PDFThe RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5' triphosphate (5'ppp) terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5'pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response.
View Article and Find Full Text PDFThe RIG-I/Mda5 sensors recognize viral intracellular RNA and trigger host antiviral responses. RIG-I signals through the adaptor protein MAVS, which engages various TRAF family members and results in type I interferon (IFNs) and proinflammatory cytokine production via activation of IRFs and NF-κB, respectively. Both the IRF and NF-κB pathways also require the adaptor protein NEMO.
View Article and Find Full Text PDFCytokine Growth Factor Rev
August 2011
Infection with the Human T-cell Leukemia virus type I (HTLV-1) retrovirus results in a number of diverse pathologies, including the aggressive, fatal T-cell malignancy adult T-cell leukemia (ATL) and the chronic, progressive neurologic disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Worldwide, it is estimated there are 15-20 million HTLV-1-infected individuals; although the majority of HTLV-1-infected individuals remain asymptomatic carriers (AC) during their lifetime, 2-5% of AC develops either ATL or HAM/TSP, but never both. Regardless of asymptomatic status or clinical outcome, HTLV-1 carriers are at high risk of opportunistic infection.
View Article and Find Full Text PDFSensing of RNA virus infection by the RIG-I-like receptors (RLRs) engages a complex signaling cascade that utilizes the mitochondrial antiviral signaling (MAVS) adapter protein to orchestrate the innate host response to pathogen, ultimately leading to the induction of antiviral and inflammatory responses mediated by type I interferon (IFN) and NF-κB pathways. MAVS is localized to the outer mitochondrial membrane, and has been associated with peroxisomes, the endoplasmic reticulum and autophagosomes, where it coordinates signaling events downstream of RLRs. MAVS not only plays a pivotal role in the induction of antiviral and inflammatory pathways but is also involved in the coordination of apoptotic and metabolic functions.
View Article and Find Full Text PDFInfection with human T-cell leukemia virus induces cellular genomic instability mediated through the viral oncoprotein Tax. Here we present evidence that Tax undermines the cellular DNA damage response by sequestration of damage response factors. We show by confocal microscopy that Tax forms damage-independent nuclear foci that contain DNA-PK, BRCA1, and MDC1.
View Article and Find Full Text PDFHuman T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation.
View Article and Find Full Text PDFInt J Food Sci Nutr
February 2007
This study aimed to assess dietary intake and nutrient adequacy in pregnant women selected from an agricultural region of Morocco. On a sample of 172 pregnant women from rural and urban area, data on socio-demographic characteristics and dietary habits by a quantified food frequency were collected using questionnaires. Mean daily intakes of energy and nutrients were estimated and compared to reference nutrient intakes (RNI).
View Article and Find Full Text PDFBackground: Long interspersed nuclear elements (LINEs), Alu and endogenous retroviruses (ERVs) make up some 45% of human DNA. LINE-1 also called L1, is the most common family of non-LTR retrotransposons in the human genome and comprises about 17% of the genome. L1 elements require the integration into chromosomal target sites using L1-encoded endonuclease which creates staggering DNA breaks allowing the newly transposed L1 copies to integrate into the genome.
View Article and Find Full Text PDF