Colorectal cancer ranks as the third most lethal cancer worldwide, resulting in over 1 million cases and 900 000 deaths per year. According to population-based studies, administration of long-term non-steroidal anti-inflammatory drugs (NSAIDs) was proven to reduce the risk of a subject developing colorectal cancer. In the present study, the anti-cancer activity of two different NSAIDs, sulindac- () or diclofenac-substituted () asymmetric silicon phthalocyanine derivatives, was evaluated in four different colorectal cancer cell lines bearing various carcinogenic mutations.
View Article and Find Full Text PDFNew asymmetric Si(IV)Pc (1), monomeloxicammonotriethyleneglycolmonomethylether (phthalocyaninano)silicone, axially ligated with meloxicam as a non-steroidal anti-inflammatory drug (NSAID), or triethylene glycol monomethyl ether and symmetric Si(IV)Pc (2), diclofenac(phthalocyaninano)silicone, axially ligated with two diclofenac as NSAID, were synthesized and characterized as antioxidant and antimicrobial agents together with (3), ditriethyleneglycolmonomethylether(phthalocyaninano)silicone, and (4), dihydroxy(phthalocyaninano)silicone. The photophysical and photochemical properties of these compounds were investigated. Then, antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion chelating activities, were performed for these Si(IV) phthalocyanine derivatives (1, 2, 3 and 4).
View Article and Find Full Text PDFIn this study, a series of novel silicon (IV) phthalocyanines conjugated axially with anti-inflammatory (sulindac) and triethylene glycol groups has been synthesized. Different synthetic strategies were attempted to obtain the targeted molecules in high yield. The compounds were fully characterized by using different analyses techniques.
View Article and Find Full Text PDF