Human immunoglobulin G (IgG) antibodies are one of the most important classes of biotherapeutic agents and undergo glycosylation at the conserved N297 site in the C2 domain, which is critical for IgG Fc effector functions and anti-inflammatory activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. While attempts to engineer for this purpose have been described, they have met limited success due in part to the lack of available oligosaccharyltransferase (OST) enzymes that can install linked glycans within the QYNST sequon of the IgG C2 domain.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) pathway involves an inbuilt quality control (QC) system that synchronizes the proofreading of substrate protein folding with lipid bilayer transport. However, the molecular details of this QC mechanism remain poorly understood. Here, we hypothesized that the conformational state of Tat substrates is directly sensed by the TatB component of the bacterial Tat translocase.
View Article and Find Full Text PDF