Publications by authors named "Belen Santiago Josefat"

The approval pathway for biosimilars of monoclonal antibodies in the European Union is aimed at ruling out the presence of significant  differences with the original biological in quality attributes, efficacy,  immunogenicity and safety. It also provides the rationale for  extrapolating the evidence obtained with a biosimilar in at least one  indication to the rest of the approved indications of its original  biological, thus simplifying the development programme of biosimilars.  Biosimilars of monoclonal antibodies available in the European Union for  the treatment of inflammatory diseases and cancer have fulfilled all the  requirements for approval, and many of them have additional evidence  available.

View Article and Find Full Text PDF

As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM).

View Article and Find Full Text PDF

Organ shape and size, and, ultimately, organ function, relate in part to the cell and tissue spatial arrangement that takes place during embryonic development. Despite great advances in the genetic regulatory networks responsible for tissue and organ development, it is not yet clearly understood how specific gene functions are linked to the specific morphogenetic processes underlying the internal organ asymmetries found in vertebrate animals. During female chick embryogenesis, and in contrast to males where both testes develop symmetrically, asymmetrical gonad morphogenesis results in only one functional ovary.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incompletely reversible airflow obstruction associated with an anomalous inflammatory response of the lungs, mainly to tobacco smoke. The best indicator of disease progression and severity is measurement of airflow obstruction (forced expiratory volume in 1 second), expressed as a percentage of the predicted value derived from a healthy reference population. Most of the treatments available for COPD have not been shown to clearly affect disease progression or mortality, probably because COPD is a heterogeneous, longstanding process and because there is wide variety in patients' phenotypes, clinical situations, and clinical course.

View Article and Find Full Text PDF

ADAM17 is a transmembrane metalloprotease involved in the proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Despite its likely participation in tumor progression and its current consideration as a therapeutic target, very little is known about the regulation of the expression of ADAM17. Here we show that long term treatment with epidermal growth factor (EGF) leads to a marked increase in the levels of ADAM17.

View Article and Find Full Text PDF

The overactivation of the HERs, a family of tyrosine kinase receptors, leads to the development of cancer. Although the canonical view contemplates HER receptors restricted to the secretory and endocytic pathways, full-length HER1, HER2 and HER3 have been detected in the nucleoplasm. Furthermore, limited proteolysis of HER4 generates nuclear C-terminal fragments (CTFs).

View Article and Find Full Text PDF

In contrast with the early view of metalloproteases as simple extracellular matrix-degrading entities, recent findings show that they are highly specific modulators of different signaling pathways involved, positively or negatively, in tumor development. Thus, before considering a given metalloprotease a therapeutic target, it seems advisable to characterize its function by identifying its repertoire of substrates. Here, we present a proteomic approach to identify ADAM17 substrates by difference gel electrophoresis.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR) is a transcriptional regulator of genes involved in xenobiotic metabolism. Increasingly clear is also the role of the AhR in the control of cell growth and proliferation. By analyzing differential patterns of gene expression between wild-type (AhR+/+) and null (AhR-/-) mouse embryo fibroblasts (MEF), we have identified latent transforming growth factor-beta binding protein 1 (LTBP-1) as a negatively AhR-regulated gene in the absence of xenobiotics.

View Article and Find Full Text PDF

Nitric oxide (NO) is responsible for cytochrome P450 (CYP450) loss during isolation and cytokine treatment of primary rat hepatocytes. As P450s mediate the metabolism of toxic chemicals, their inhibition could compromise the cells competence to eliminate toxins, a condition potentially relevant in neurological diseases involving constitutive activation of nitric oxide synthase (NOS) and NO over-production. Here, we have investigated the correlation between NO accumulation and CYP1A2 down-regulation during maturation of mouse cerebellar granule cells (CGC).

View Article and Find Full Text PDF

The dioxin receptor (AhR), in addition to its role in xenobiotic-induced carcinogenesis, appears to participate in cell proliferation, differentiation and organ homeostasis. Understanding potential mechanisms of activation of this receptor in the absence of exogenous ligands is therefore important to study its contribution to endogenous cellular functions. Using mouse embryo primary fibroblasts, we have previously shown that proteasome inhibition increased AhR transcriptional activity in the absence of xenobiotics.

View Article and Find Full Text PDF

Resveratrol, a natural phytoalexin, has gained much interest on the basis of its potential chemopreventive activity against human cancer. In this work, using the human breast cancer cell lines MCF-7 and MDA-MB-231, we have analyzed a possible mechanism by which resveratrol could interfere with cell cycle control and induce cell death. Our results show that although resveratrol inhibited cell proliferation and viability in both cell lines, apoptosis was induced in a concentration- and cell-specific manner.

View Article and Find Full Text PDF