El Niño-Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO.
View Article and Find Full Text PDFThe West African Monsoon (WAM) system is the main source of rainfall in the agriculturally based region of the Sahel. Understanding transport across the WAM is of crucial importance due to the strong impact of humidity and dust pathways on local cloud formation. However, the description of this transport is challenging due to its 3D complex nature.
View Article and Find Full Text PDFThis dataset, gathered during the RETRO-BMC cruise, reports multiple-scale measurements at the Confluence of the Brazil and Malvinas Currents. The cruise was carried out between 8 and 28 April 2017 onboard R/V Hespérides, departing from Ushuaia and arriving to Santos. Along its track, the vessel recorded near-surface temperature and salinity, as well as the horizontal flow from 20 m down to about 800 m.
View Article and Find Full Text PDFMalaria is a major public health problem in West Africa. Previous studies have shown that climate variability significantly affects malaria transmission. The lack of continuous observed weather station data and the absence of surveillance data for malaria over long periods have led to the use of reanalysis data to drive malaria models.
View Article and Find Full Text PDFThe mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi-arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi-arid Mediterranean pine forests in Spain over 1950-2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2017
The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal.
View Article and Find Full Text PDFThe aim of this work, undertaken in the framework of QWeCI (Quantifying Weather and Climate Impacts on health in the developing countries) project, is to study how climate variability could influence malaria seasonal incidence. It will also assess the evolution of vector-borne diseases such as malaria by simulation analysis of climate models according to various climate scenarios for the next years. Climate variability seems to be determinant for the risk of malaria development (Freeman and Bradley, 1996 [1], Lindsay and Birley, 1996 [2], Kuhn et al.
View Article and Find Full Text PDF