Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD) and is defined as an excessive accumulation of scar tissue in the intestinal wall. Intestinal fibrosis occurs in both forms of IBD: ulcerative colitis and Crohn's disease. Small-molecule inhibitors targeting hypoxia-inducing factor (HIF) prolyl-hydroxylases are promising for the development of novel antifibrotic therapies in IBD.
View Article and Find Full Text PDFBackground And Purpose: Δ -Tetrahydrocannabinolic acid (Δ -THCA-A), the precursor of Δ -THC, is a non-psychotropic phytocannabinoid that shows PPARγ agonist activity. Here, we investigated the ability of Δ -THCA-A to modulate the classic cannabinoid CB and CB receptors and evaluated its anti-arthritis activity in vitro and in vivo.
Experimental Approach: Cannabinoid receptors binding and intrinsic activity, as well as their downstream signalling, were analysed in vitro and in silico.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which can cause cartilage and bone damages as well as pain and disability. In order to prevent disease progression, reduce pain, and major symptoms of RA, one good strategy consists in targeting proinflammatory cytokines that have the key role in the vicious circle of synovial inflammation and pain. The micro-immunotherapy medicine (MIM) 2LARTH® targets cytokines involved in inflammation.
View Article and Find Full Text PDFMedicinal cannabis has remarkable therapeutic potential, but its clinical use is limited by the psychotropic activity of Δ9-tetrahydrocannabinol (Δ9-THC). However, the biological profile of the carboxylated, non-narcotic native precursor of Δ9-THC, the Δ9-THC acid A (Δ9-THCA-A), remains largely unexplored. Here we present evidence that Δ9-THCA-A is a partial and selective PPARγ modulator, endowed with lower adipogenic activity than the full PPARγ agonist rosiglitazone (RGZ) and enhanced osteoblastogenic effects in hMSC.
View Article and Find Full Text PDFBackground: The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB and nuclear PPARγ receptors, can also be the target of specific cannabinoids.
Methods: We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.
The endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Cannabinoids acting as dual PPARγ/CB agonists, such as VCE-004.8 and Ajulemic acid (AjA), have been shown to alleviate skin fibrosis and inflammation in SSc models.
View Article and Find Full Text PDFOver the past few years, the endocannabinoid system (ECs) has emerged as a crucial player for the regulation of food intake and energy metabolism, and its pharmacological manipulation represents a novel strategy for the management of metabolic diseases. The discovery that VCE-004.8, a dual PPARγ and CB receptor agonist, also inhibits prolyl-hydroxylases (PHDs) and activates the HIF pathway provided a rationale to investigate its effect in in vitro models of adipogenesis and in a murine model of metabolic syndrome, all processes critically regulated by these targets of VCE-004.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
November 2018
N-acyl-dopamines are endolipids with neuroprotective, antiinflammatory and immunomodulatory properties. Previously, we showed the ability of these compounds to induce HIF-1α stabilization. Hypoxia and HIF-1α play an important role in the most relevant stages of diabetic pathogenesis.
View Article and Find Full Text PDFBackground And Purpose: The endocannabinoid system and PPARγ are important targets for the development of novel compounds against fibrotic diseases such as systemic sclerosis (SSc), also called scleroderma. The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and study its anti-inflammatory and anti-fibrotic activities.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to restore lost function. Cannabinoids such as Δ-THC and CBD are multi-target compounds already introduced in the clinical practice for multiple sclerosis (MS).
View Article and Find Full Text PDFBackground: Neuroprotection with cannabinoids in Parkinson's disease (PD) has been afforded predominantly with antioxidant or anti-inflammatory cannabinoids. In the present study, we investigated the anti-inflammatory and neuroprotective properties of VCE-003.2, a quinone derivative of the non-psychotrophic phytocannabinoid cannabigerol (CBG), which may derive its activity at the peroxisome proliferator-activated receptor-γ (PPARγ).
View Article and Find Full Text PDFBackground And Purpose: Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ -tetahydrocannabinol acid (Δ -THCA) is largely unknown, despite its occurrence in different Cannabis preparations.
View Article and Find Full Text PDFCannabinoids have shown to exert neuroprotective actions in animal models by acting at different targets including canonical cannabinoid receptors and PPARγ. We previously showed that VCE-003, a cannabigerol (CBG) quinone derivative, is a novel neuroprotective and anti-inflammatory cannabinoid acting through PPARγ. We have now generated a non-thiophilic VCE-003 derivative named VCE-003.
View Article and Find Full Text PDF