Publications by authors named "Belen Martinez-Garcia"

DNA supercoiling in biological systems can occur via three mechanisms. The first is by the activity of DNA topoisomerases, such as DNA gyrases, that can increase or reduce the linking number of relaxed DNA (Lk). The second is via DNA translocation motors, such as RNA and DNA polymerases, that produce twin supercoiled DNA domains: one positively supercoiled in front and one negatively supercoiled behind.

View Article and Find Full Text PDF

One elusive aspect of the chromosome architecture is how it constrains the DNA topology. Nucleosomes stabilise negative DNA supercoils by restraining a DNA linking number difference (∆Lk) of about -1.26.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered that a special protein called Gcf1p helps organize mitochondrial DNA in a different way compared to similar proteins in humans and yeast.
  • The research showed that Gcf1p can stick to DNA in unique ways, which helps it keep the DNA in a compact form without changing its structure.
  • This study suggests that the way Gcf1p and other proteins work together is important for the survival of certain bad bacteria, like Candida albicans, which can resist antibiotics.
View Article and Find Full Text PDF

Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils.

View Article and Find Full Text PDF

The DNA-passage activity of topoisomerase II accidentally produces DNA knots and interlinks within and between chromatin fibers. Fortunately, these unwanted DNA entanglements are actively removed by some mechanism. Here we present an outline on DNA knot formation and discuss recent studies that have investigated how intracellular DNA knots are removed.

View Article and Find Full Text PDF

The juxtaposition of intracellular DNA segments, together with the DNA-passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II.

View Article and Find Full Text PDF

Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (-) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold.

View Article and Find Full Text PDF

The characterization of knots formed in duplex DNA has proved useful to infer biophysical properties and the spatial trajectory of DNA, both in free solution and across its macromolecular interactions. Since knotting, like supercoiling, makes DNA molecules more compact, DNA knot probability and knot complexity can be assessed by the electrophoretic velocity of nicked DNA circles. However, the chirality of the DNA knots has to be determined by visualizing the sign of their DNA crossings by means of electron microscopy.

View Article and Find Full Text PDF

The interplay between chromatin structure and DNA topology is a fundamental, yet elusive, regulator of genome activities. A paradigmatic case is the "linking number paradox" of nucleosomal DNA, which refers to the incongruence between the near two left-handed superhelical turns of DNA around the histone octamer and the DNA linking number difference (∆Lk) stabilized by individual nucleosomes, which has been experimentally estimated to be about -1.0.

View Article and Find Full Text PDF

Most bacterial cells have a motor enzyme termed DNA gyrase, which is a type-2 topoisomerase that reduces the linking number (Lk) of DNA. The supercoiling energy generated by gyrase is essential to maintain the bacterial chromosome architecture and regulate its DNA transactions. This chapter describes the use of agarose-gel electrophoresis to detect the unconstrained supercoiling of DNA generated by gyrase or other gyrase-like activities.

View Article and Find Full Text PDF

In vivo DNA molecules are narrowly folded within chromatin fibers and self-interacting chromatin domains. Therefore, intra-molecular DNA entanglements (knots) might occur via DNA strand passage activity of topoisomerase II. Here, we assessed the presence of such DNA knots in a variety of yeast circular minichromosomes.

View Article and Find Full Text PDF

Context: Over the last few decades, advances in sequencing have improved greatly. One of the most important achievements of Next Generation Sequencing (NGS) is to produce millions of sequence reads in a short period of time, and to produce large sequences of DNA in fragments of any size. Libraries can be generated from whole genomes or any DNA or RNA region of interest without the need to know its sequence beforehand.

View Article and Find Full Text PDF

DNA is wrapped in a left-handed fashion around histone octasomes containing the centromeric histone H3 variant CENP-A. However, DNA topology studies have suggested that DNA is wrapped in a right-handed manner around the CENP-A nucleosome that occupies the yeast point centromere. Here, we determine the DNA linking number difference (ΔLk) stabilized by the yeast centromere and the contribution of the centromere determining elements (CDEI, CDEII, and CDEIII).

View Article and Find Full Text PDF

Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS.

View Article and Find Full Text PDF

By transporting one DNA double helix (T-segment) through a double-strand break in another (G-segment), topoisomerase II reduces fractions of DNA catenanes, knots and supercoils to below equilibrium values. How DNA segments are selected to simplify the equilibrium DNA topology is enigmatic, and the biological relevance of this activity is unclear. Here we examined the transit of the T-segment across the three gates of topoisomerase II (entry N-gate, DNA-gate and exit C-gate).

View Article and Find Full Text PDF

Objectives: To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE).

Methods: Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score.

View Article and Find Full Text PDF

It has been proposed that the hepatitis C virus (HCV) internal ribosome entry site (IRES) resides within a locked conformation, owing to annealing of its immediate flanking sequences. In this study, structure probing using Escherichia coli dsRNA-specific RNase III and other classical tools showed that this region switches to an open conformation triggered by the liver-specific microRNA, miR-122. This structural transition, observed in vitro, may be the mechanistic basis for the involvement of downstream IRES structural domain VI in translation, as well as providing a role of liver-specific miR-122 in HCV infection.

View Article and Find Full Text PDF

ABSTRACT The effects on symptom expression of single amino acid mutations in the central region of the Plum pox virus (PPV) helper component-proteinase (HC-Pro) gene were analyzed in Nicotiana benthamiana using Potato virus X (PVX) recombinant viruses. PVX recombinant virus expressing the wild-type variant of PPV HC-Pro induced the expected enhancement of PVX pathogenicity, manifested as necrosis and plant death. Recombinant virus expressing a variant of PPV HC-Pro containing a single point mutation ( HCL(134)H) was unable to induce this synergistic phenotype.

View Article and Find Full Text PDF

In plants, small RNA-guided processes referred to as RNA silencing control gene expression and serve as an efficient antiviral mechanism. Plant viruses are inducers and targets of RNA silencing as infection involves the production of functional virus-derived small interfering RNAs (siRNAs). Here we investigate the structural and genetic components influencing the formation of Tobacco rattle virus (TRV)-derived siRNAs.

View Article and Find Full Text PDF

Hairpin RNAs have been used to confer resistance to viruses in plants through RNA silencing. However, it has not been demonstrated that RNA silencing was effective against inoculation by aphids of non-persistently transmitted viruses, the major route of plant virus spread in nature. As a proof-of-principle strategy, we made use of Agrobacterium tumefaciens to transiently express a hairpin RNA homologous to Potato virus Y (PVY) in plant tissues.

View Article and Find Full Text PDF

Potyviruses are non-persistently transmitted by aphid vectors with the assistance of a viral accessory factor known as helper component (HC-Pro), a multifunctional protein that is also involved in many other essential processes during the virus infection cycle. A transient Agrobacterium-mediated expression system was used to produce Plum pox virus (PPV) HC-Pro in Nicotiana benthamiana leaves from constructs that incorporated the 5' region of the genome, yielding high levels of HC-Pro in agroinfiltrated leaves. The expressed PPV HC-Pro was able to assist aphid transmission of purified virus particles in a sequential feeding assay, and to complement transmission-defective variants of the virus.

View Article and Find Full Text PDF

Tobacco etch potyvirus (TEV) is transmitted by aphids in a non-persistent manner with the assistance of a virus-encoded protein known as helper component (HC-Pro). To produce a biologically active form of recombinant TEV HC-Pro protein, heterologous expression in the methylotrophic yeast Pichia pastoris was used. A cDNA encoding the TEV HC-Pro region, fused to a Saccharomyces cerevisiae alpha-mating factor secretory peptide coding region, was inserted into the P.

View Article and Find Full Text PDF

Background: Double-stranded RNA (dsRNA) is a potent initiator of gene silencing in a diverse group of organisms that includes plants, Caenorhabditis elegans, Drosophila and mammals. We have previously shown and patented that mechanical inoculation of in vitro-transcribed dsRNA derived from viral sequences specifically prevents virus infection in plants. The approach required the in vitro synthesis of large amounts of RNA involving high cost and considerable labour.

View Article and Find Full Text PDF