Introduction: The gradual aging of the population results in increased incidence of osteoporotic bone fractures. In a good quality bone, the fixation with the usual methods is adequate, but not in osteoporotic bone, in which consolidation delays and other complications are common, with failure rates for screws up to 25%.
Objective: To test fibronectin loaded hydroxyapatite as a complementary treatment for osteoporotic fractures.
Hydroxyapatite is a bioactive ceramic frequently used for bone engineering/replacement. One of the parameters that influence the biological response to implanted materials is the conformation of the first adsorbed protein layer. In this work, the adsorption and conformational changes of two fibroid serum proteins; fibronectin and fibrinogen adsorbed onto four different hydroxyapatite powders are studied with a Quartz Crystal Microbalance with Dissipation (QCM-D).
View Article and Find Full Text PDFProtein-surface interaction may determine the success or failure of an implanted device. Not much attention have been paid to the specific surface parametes of hydroxyapatite (OHAp) that modulates and determines the formation and potential activity of the layer of proteins that is first formed when the material get in contact with the host tissue. the influence of specific surface area (SSA), crystallite size (CS) and particle size (PS) of OHAp on the adsorption of proteins relevant for bone regeneration is evaluated in this article.
View Article and Find Full Text PDF