For many biopharmaceuticals, subcutaneous (sc) administration is the only viable route. However, there is no in vitro method available accurately predicting the absorption profiles of subcutaneously injected pharmaceuticals. In this work, we show that a recently developed microfluidics method for interaction studies (MIS) has the potential to be useful in this respect.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2021
Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (HO).
View Article and Find Full Text PDFRecently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc.
View Article and Find Full Text PDFNanoceria (cerium oxide nanoparticles) have been shown to protect human lens epithelial cells (HLECs) from oxidative stress when used at low concentrations. However, there is a lack of understanding about the mechanism of the cytotoxic and genotoxic effects of nanoceria when used at higher concentrations. Here, we investigated the impact of 24-hour exposure to nanoceria in HLECs.
View Article and Find Full Text PDF