Cyanobacterial pigments have attracted considerable attention in industry due to their bioactive potential and natural origin. In the present study, the growth dynamics and pigment composition, in terms of chlorophyll , total carotenoids and phycobiliprotein content, of four cyanobacterial strains isolated from thermal springs, namely CZS 2201, CZS 2205, TSZ 2203, and sp. CZS 2204, were investigated.
View Article and Find Full Text PDFSoil salinity, which affects plant photosynthesis mechanisms, significantly limits plant productivity. Soil microorganisms, including cyanobacteria, can synthesize various exometabolites that contribute to plant growth and development in several ways. These microorganisms can increase plant tolerance to salt stress by secreting various phytoprotectants; therefore, it is highly relevant to study soil microorganisms adapted to high salinity and investigate their potential to increase plant resistance to salt stress.
View Article and Find Full Text PDFThe increase in industrialization has led to an exponential increase in heavy metal (HM) soil contamination, which poses a serious threat to public health and ecosystem stability. This review emphasizes the urgent need to develop innovative technologies for the environmental remediation of intensive anthropogenic pollution. Phytoremediation is a sustainable and cost-effective approach for the detoxification of contaminated soils using various plant species.
View Article and Find Full Text PDFRaman spectroscopy (RS), a powerful analytical technique, has gained increasing recognition and utility in the fields of biomedical and biological research. Raman spectroscopic analyses find extensive application in the field of medicine and are employed for intricate research endeavors and diagnostic purposes. Consequently, it enjoys broad utilization within the realm of biological research, facilitating the identification of cellular classifications, metabolite profiling within the cellular milieu, and the assessment of pigment constituents within microalgae.
View Article and Find Full Text PDFThe use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy.
View Article and Find Full Text PDFThe potential of cyanobacteria to perform a variety of distinct roles vital for the biosphere, including nutrient cycling and environmental detoxification, drives interest in studying their biodiversity. Increasing soil erosion and the overuse of chemical fertilizers are global problems in developed countries. The option might be to switch to organic farming, which entails largely the use of biofertilisers.
View Article and Find Full Text PDFNowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
July 2021
Environmental and energy security has now become a serious global problem, requiring a lot of research to find and implement its cost-effective and environmentally friendly alternatives. The development and use of renewable energy sources is necessary and important in order to avoid the emergence of a global economic crisis. One of the solution to prevent a future crisis caused by energy shortages is to introduce biofuels into the fuel market.
View Article and Find Full Text PDFJ Biotechnol
December 2020
Current fresh water and energy shortage determines the need to study the possibilities of using living objects in bioenergy and environmental purification technologies. The development of waste-free technologies allows waste recycling, which saves raw materials and energy, in turn, reducing waste generation. The effect of different carbon dioxide concentrations and wastewater from households on the growth of cyanobacteria was studied in order to determine their capabilities in the purification processes.
View Article and Find Full Text PDF