Alzheimer's disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia activation in AD. The gene transcriptional product is alternatively spliced to produce three different protein isoforms.
View Article and Find Full Text PDFIntroduction: Given the prevalence and staggering cost of neurological disorders, there is dire need for effective early detection and intervention tools. Emerging evidence suggests that multidisciplinary lifestyle interventions (MLI) may mitigate the risk and progression of neurological disorders. The objectives of this protocol are (1) to test the impact of MLI on the progression of neurological disorders and (2) to identify multi-omic biomarkers for early stages of neurological disease and the impact of MLIs on these biomarkers.
View Article and Find Full Text PDFBackground And Objectives: The clinical diagnosis of dementia with Lewy bodies (DLB) depends on identifying significant cognitive decline accompanied by core features of parkinsonism, visual hallucinations, cognitive fluctuations, and REM sleep behavior disorder (RBD). Hyposmia is one of the several supportive features. α-Synuclein seeding amplification assays (αSyn-SAAs) may enhance diagnostic accuracy by detecting pathologic αSyn seeds in CSF.
View Article and Find Full Text PDFDement Geriatr Cogn Disord
October 2024
Introduction: Cerebral amyloid angiopathy (CAA) is characterized by amyloid β (Aβ) deposition in brain vessels, leading to hemorrhagic phenomena and cognitive impairment. Magnetic resonance imaging (MRI)-based criteria allow a diagnosis of probable CAA in vivo, but such a diagnosis cannot predict the eventual development of CAA.
Methods: We conducted a retrospective cohort study of 464 patients with cognitive disorders whose data were included in a brain health biobank.
Introduction: The National Institute on Aging - Alzheimer's Association (NIA-AA) ATN research framework proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to stage individuals with AD pathological features and track changes longitudinally. The overall aim was to utilize this framework to characterize pre-mortem ATN status longitudinally in a clinically diagnosed cohort of dementia with Lewy bodies (DLB) and to correlate it with the post mortem diagnosis.
Methods: The cohort was subtyped by cerebrospinal fluid (CSF) ATN category.
Background: The relationship between biomarkers of metabolic syndrome and insulin resistance, plasma triglyceride/HDL cholesterol (TG/HDL-C) ratio, on the rate of cognitive decline in mild cognitive impairment (MCI) and dementia stages of Alzheimer's disease (AD) is unknown. The role of peripheral and cerebrospinal fluid (CSF) levels of Apolipoprotein A1 (ApoA1), a key functional component of HDL, on cognitive decline also remains unclear among them. Here we evaluate baseline plasma TG/HDL-C ratio and CSF and plasma ApoA1 levels and their relation with cognitive decline in the MCI and Dementia stages of AD.
View Article and Find Full Text PDFTranslating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer's disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome.
View Article and Find Full Text PDFIntroduction: Recent advances in generating massive single-cell/nucleus transcriptomic data have shown great potential for facilitating the identification of cell type-specific Alzheimer's disease (AD) pathobiology and drug-target discovery for therapeutic development.
Methods: We developed The Alzheimer's Cell Atlas (TACA) by compiling an AD brain cell atlas consisting of over 1.1 million cells/nuclei across 26 data sets, covering major brain regions (hippocampus, cerebellum, prefrontal cortex, and so on) and cell types (astrocyte, microglia, neuron, oligodendrocytes, and so on).
Alzheimer's disease (AD) has been linked to multiple immune system-related genetic variants. Triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. In addition, soluble TREM2 (sTREM2) isoform is elevated in cerebrospinal fluid in the early stages of AD and is associated with slower cognitive decline in a disease stage-dependent manner.
View Article and Find Full Text PDFInflammatory changes are among the key markers of Alzheimer's disease (AD) related pathological changes. Pro-inflammatory analytes have been related to cognitive decline while others have been related to attenuating neuronal death. Among them, changes in cerebrospinal fluid (CSF) levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and soluble tumor necrosis factor receptor 2 (sTNFR2) have been described as impacting favorable clinical outcomes in AD.
View Article and Find Full Text PDFSleep dysfunction has been identified in the pathophysiology of Alzheimer's disease (AD); however, the role and mechanism of circadian rhythm dysfunction is less well understood. In a well-characterized cohort of patients with AD at the mild cognitive impairment stage (MCI-AD), we identify that circadian rhythm irregularities were accompanied by altered humoral immune responses detected in both the cerebrospinal fluid and plasma as well as alterations of cerebrospinal fluid biomarkers of neurodegeneration. On the other hand, sleep disruption was more so associated with abnormalities in circulating markers of immunity and inflammation and decrements in cognition.
View Article and Find Full Text PDFTumor necrosis factor receptor 2 (TNFR2) promotes neuronal survival downstream. This longitudinal study evaluated whether the gene encoding TNFR2 and levels of its soluble form (sTNFR2) affect Alzheimer disease (AD) biomarkers and clinical outcomes. Data analyzed included 188 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had mild cognitive impairment (MCI) and AD dementia.
View Article and Find Full Text PDFBecause disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the accumulation in the brain of extracellular amyloid β (Aβ) plaques as well as intraneuronal inclusions (neurofibrillary tangles) consisting of total tau and phosphorylated tau. Also present are dystrophic neurites, loss of synapses, neuronal death, and gliosis. AD genetic studies have highlighted the importance of inflammation in this disease by identifying several risk associated immune response genes, including TREM2.
View Article and Find Full Text PDFAm J Alzheimers Dis Other Demen
April 2021
We describe a clinical, imaging and biomarker phenotype associated with an amyloid precursor gene variant in a 45-year-old man with progressive cognitive and behavioral dysfunction. Brain MRI showed bilateral, confluent T2 hyperintensities predominantly in the anterior white matter. Amyloid imaging and CSF testing were consistent with amyloid deposition.
View Article and Find Full Text PDFBackground: Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor.
Methods: In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer's Drug Discovery, https://alzgps.
Studies of resting-state functional connectivity MRI in Alzheimer's disease suggest that disease stage plays a role in functional changes of the default mode network. Individuals with the genetic disorder Down syndrome show an increased incidence of early-onset Alzheimer's-type dementia, along with early and nearly universal neuropathologic changes of Alzheimer's disease. The present study examined high-resolution functional connectivity of the default mode network in 11 young adults with Down syndrome that showed no measurable symptoms of dementia and 11 age- and sex-matched neurotypical controls.
View Article and Find Full Text PDFFollowing two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases.
View Article and Find Full Text PDFObjective: To determine the inflammatory analytes that predict clinical progression and evaluate their performance against biomarkers of neurodegeneration.
Methods: A longitudinal study of MCI-AD patients in a Discovery cohort over 15 months, with replication in the Alzheimer's Disease Neuroimaging Initiative (ADNI) MCI cohort over 36 months. Fifty-three inflammatory analytes were measured in the CSF and plasma with a RBM multiplex analyte platform.
Individuals with Down syndrome (DS) develop Alzheimer's disease (AD)-related neuropathology, characterized by amyloid plaques with amyloid β (Aβ) and neurofibrillary tangles with tau accumulation. Peripheral inflammation and the innate immune response are elevated in DS. Triggering receptor expressed in myeloid cells 2 () genetic variants are risk factors for AD and other neurodegenerative diseases.
View Article and Find Full Text PDFObjective: This study tests the hypothesis that certain MRI-based regional brain volumes will show reductions over time in a cohort exposed to repetitive head impacts (RHI).
Methods: Participants were drawn from the Professional Fighters Brain Health Study, a longitudinal observational study of professional fighters and controls. Participants underwent annual 3T brain MRI, computerized cognitive testing, and blood sampling for determination of neurofilament light (NfL) and tau levels.
Particles dispersed on the surface of oxide supports have enabled a wealth of applications in electrocatalysis, photocatalysis, and heterogeneous catalysis. Dispersing nanoparticles within the bulk of oxides is, however, synthetically much more challenging and therefore less explored, but could open new dimensions to control material properties analogous to substitutional doping of ions in crystal lattices. Here we demonstrate such a concept allowing extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, within a perovskite oxide lattice as well as on its surface.
View Article and Find Full Text PDF