Publications by authors named "Bekker O"

A new silver(I) cluster [AgL(Py)(Pype)]·4Py·11HO () with 3-benzyl-4-phenyl-1,2,4-triazol-5-thiol (L) was synthesized via the direct reaction of AgNO and L in MeOH, followed by recrystallization from a pyridine-piperidine mixture. The compound was isolated in a monocrystal form and its crystal structure was determined via single crystal X-ray diffraction. The complex forms a "butterfly" cluster with triazol-5-thioles.

View Article and Find Full Text PDF

The World Health Organization (WHO) reports that tuberculosis (TB) is one of the top 10 leading causes of global mortality. The increasing incidence of multidrug-resistant TB highlights the urgent need for an intensified quest to discover innovative anti-TB medications In this study, we investigated four new derivatives from the quinoxaline-2-carboxylic acid 1,4-dioxide class. New 3-methylquinoxaline 1,4-dioxides with a variation in substituents at positions 2 and 6(7) were synthesized via nucleophilic aromatic substitution with amines and assessed against a spp.

View Article and Find Full Text PDF

Drug resistance (DR) in is the main problem in fighting tuberculosis (TB). This pathogenic bacterium has several types of DR implementation: acquired and intrinsic DR. Recent studies have shown that exposure to various antibiotics activates multiple genes, including genes responsible for intrinsic DR.

View Article and Find Full Text PDF

New complexes of zinc(ii) and copper(ii) with 2-furoic acid (Hfur), acetic acids and N-donor ligands with the compositions [Zn(fur)] (1), [Zn(fur)(NHpy)] (2, NHpy = 3-aminopyridine), [Zn(fur)(neoc)] (3, neoc = 2,9-dimethyl-1,10-phenantroline), [Zn(OAc)(neoc)] (4, OAc = acetat-anion), and [Cu(fur)(neoc)(HO)] (5) were synthesized. The structures of the compounds were established by single crystal X-ray diffraction analysis. Complexes 1 and 2 are binuclear; whereas 3-5 are mononuclear.

View Article and Find Full Text PDF

The emergence of drug resistance in pathogens leads to a loss of effectiveness of antimicrobials and complicates the treatment of bacterial infections. Quinoxaline 1,4-dioxides represent a prospective scaffold for search of new compounds with improved chemotherapeutic characteristics. Novel 2-acyl-3-trifluoromethylquinoxaline 1,4-dioxides with alteration of substituents at position 2 and 6 were synthesized via nucleophilic substitution with piperazine moiety and evaluated against a broad panel of bacteria and fungi by measuring their minimal inhibitory concentrations.

View Article and Find Full Text PDF

Objectives: The aim of this study was to obtain Streptomyces xinghaiensis (fradiae) ATCC 19609 mutants resistant to oligomycin A and its derivatives and to identify the underlying mechanism of resistance. This study was based on the premise that S. xinghaiensis ATCC 19609 contains several oligomycin A biological targets, explaining why the strain remains supersensitive to oligomycin A despite all efforts to obtain resistant mutants using standard genetic methods.

View Article and Find Full Text PDF

We report the draft genome sequences of three isolates belonging to the B0/N-90 sublineage, EKB34, EKB53, and EKB79. The B0/N-90 sublineage belongs to the prevalent (in Russia) and highly virulent Beijing-B0/W148 sublineage. Isolates EKB34 and EKB79 were obtained from people with immune deficiency.

View Article and Find Full Text PDF

Tuberculosis (TB) has recently become the leading killer among infectious diseases. Multidrug and extensively drug-resistant Mycobacterium tuberculosis strains urge the need to develop anti-TB drugs with a novel mechanism of action. We describe synthesis of 22 novel imidazo[1,2-b][1,2,4,5]tetrazine derivatives with different substituents at C(3) and C(6) positions, and their antimycobacterial activity in vitro.

View Article and Find Full Text PDF

We describe the synthesis of epi-oligomycin A, a (33)-diastereomer of the antibiotic oligomycin A. The structure of (33)-oligomycin A was determined by elemental analysis, spectroscopic studies, including 1D and 2D NMR spectroscopy, and mass spectrometry. Isomerization of C33 hydroxyl group led to minor changes in the potency against , , and filamentous fungi whereas the activity against decreased by approximately 20-fold compared to oligomycin A.

View Article and Find Full Text PDF

Although drug resistance in is mainly caused by mutations in drug activating enzymes or drug targets, there is increasing interest in the possible role of efflux in causing drug resistance. Previously, efflux genes have been shown to be upregulated upon drug exposure or implicated in drug resistance in overexpression studies, but the role of mutations in efflux pumps identified in clinical isolates in causing drug resistance is unknown. Here we investigated the role of mutations in efflux pump Rv1258c (Tap) from clinical isolates in causing drug resistance in We constructed point mutations V219A and S292L in Rv1258c in the chromosome of and the point mutations were confirmed by DNA sequencing.

View Article and Find Full Text PDF

We report a draft genome sequence of Streptomyces xinghaiensis () OlgR, which is resistant to oligomycin A. This mutant strain is derived from S. xinghaiensis OlgR2.

View Article and Find Full Text PDF

We describe Streptomyces fradiae mechanisms of sensitivity to nitrone-oligomycin A, a derivative of oligomycin A. We obtained S. fradiae-nitR bld, a nitrone-oligomycin A resistant mutant with a «bald» phenotype.

View Article and Find Full Text PDF

Although, the structure of oligomycin A (1) was confirmed by spectroscopic and chemical evaluations, some crystallographic data cast doubt on the originally adopted structure of the side 2-hydroxypropyl moiety of this antibiotic. It was suggested that the side chain of the oligomycin is enol-related (2-hydroxy-1-propenyl). To clarify this matter we synthesized and evaluated 33-dehydrooligomycin A (2) prepared by the Kornblum oxidation of 33-O-mesyloligomycin A (3) by dimethyl sulfoxide.

View Article and Find Full Text PDF

We report a draft genome sequence of strain B9741 belonging to Beijing B0/W lineage isolated from a HIV patient from Siberia, Russia. This clinical isolate showed MDR phenotype and resistance to isoniazid, rifampin, streptomycin and pyrazinamide. We analyzed SNPs associated with virulence and resistance.

View Article and Find Full Text PDF

The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases).

View Article and Find Full Text PDF

Synthetic routes to novel N-(purin-6-yl)- and N-(2-aminopurin-6-yl) conjugates with amino acids and glycine-containing dipeptides were developed. In vitro testing of 42 new and known compounds made it possible to reveal a series of N-(purin-6-yl)- and N-(2-aminopurin-6-yl) conjugates exhibiting significant antimycobacterial activity against Mycobacterium tuberculosis H37Rv, Mycobacterium avium, Mycobacterium terrae, and multidrug-resistant M. tuberculosis strain isolated from tuberculosis patients in the Ural region (Russia).

View Article and Find Full Text PDF

We report a draft genome sequence of Streptomyces fradiae olg1-1, a mutant strain derived from the model object S. fradiae ATCC 19609, which is resistant to nitrone-oligomycin and has a mutation in the DNA-binding domain of a transcriptional regulator PadR.

View Article and Find Full Text PDF

We report draft genome sequences of two pyrazinamide (PZA)-resistant isolates, Mycobacterium tuberculosis 13-4152 and 13-2459. Isolate 13-4152 is PZA resistant, though it lacks mutations in known genes of PZA resistance. The comparative analysis of these genomes with those stored in GenBank revealed unique mutations, which may elucidate new mechanisms of PZA resistance.

View Article and Find Full Text PDF

Resistance to pyrazinamide (PZA) may impact clinical outcome of anti-tuberculosis chemotherapy. PZA susceptibility testing using MGIT 960 is not reliable and little information is available on the prevalence of PZA resistance in Russia. A collection of 64 clinical isolates of Mycobacterium tuberculosis, including 35 multidrug resistant and extensively drug-resistant (MDR/XDR), was analyzed for PZA resistance using MGIT 960, Wayne test, and sequencing of PZA resistance genes pncA, rpsA and panD.

View Article and Find Full Text PDF

We report a draft genome sequence of Mycobacterium tuberculosis strain E186hv, belonging to the Beijing B0/W lineage and isolated from a patient from Kurgan, Russia. This clinical isolate showed a reduced virulence phenotype unusual for this lineage and resistance to isoniazid, rifampin, ethambutol, pyrazinamide, and ofloxacin. We analyzed single nucleotide polymorphisms (SNPs) associated with virulence.

View Article and Find Full Text PDF

The problem of Mycobacterium tuberculosis virulence, together with drug resistance, is becoming key for the design of drugs with a new mechanism of action and the production of modern concepts and tuberculosis treatment schemes. The review describes gene complexes and their products, including mycolic acids and global regulatory systems at the level of transcriptional, translational, and post-translational modification, etc. The criteria for selection of virulence/pathogenicity factors that might be used for comparative genomic analysis of strains differing in the degree of virulence were recommended.

View Article and Find Full Text PDF

We report here a sequence of the genome of the Streptomyces fradiae ATCC 19609 strain, initially isolated from the soil, which produces tylosin. S. fradiae is highly sensitive to different classes of antibiotics, compared to the sensitivities of other bacteria.

View Article and Find Full Text PDF

Studies of reactivity of antibiotic oligomycin A in various alkaline conditions showed that the compound easily undergoes retroaldol degradation in β-hydroxy ketone fragments positioned in the C7-C13 moiety of the antibiotic molecule. Depending on reaction conditions, the retroaldol fragmentation of the 8,9 or 12,13 bonds or formation of a product through double retroaldol degradation, when the fragment C9-C12 was detached, took place followed by further transformations of the intermediate aldehydes formed. The structures of the obtained non-cyclic derivatives of oligomycin A were supported by NMR and MS methods.

View Article and Find Full Text PDF

A novel way of chemical modification of the macrolide antibiotic oligomycin A (1) at the side chain was developed. Mesylation of 1 with methane sulfonyl chloride in the presence of 4-dimethylaminopyridine produced 33-O-mesyl oligomycin in 56% yield. Reactions of this intermediate with sodium azide produced the key derivative 33-azido-33-deoxy-oligomycin A in 60% yield.

View Article and Find Full Text PDF

It was found by virtual screening that 3-amino-1H-pyrazolo[3,4-b]quinolines could have wide protein kinase inhibitory activity. Amides of titled amines and thioureas were synthesized regioselectively. 3-Amino-7-methoxy-1H-pyrazolo[3,4-b]quinoline demonstrated in vitro significant inhibitory activity on bacterial serine/threonine protein kinases (inhibition of resistance to kanamycin in Streptomyces lividans regulated by protein kinases).

View Article and Find Full Text PDF