Publications by authors named "Bekerom D"

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

In this Letter, the counterintuitive and largely unknown Raman activity of oxygen atoms is evaluated for its capacity to determine absolute densities in gases with significant O-density. The study involves ${\rm CO}_2$ microwave plasma to generate a self-calibrating mixture and establish accurate cross sections for the $^3{\!P_2}{\leftrightarrow ^3}{\!P_1}$ and $^3{\!P_2}{\leftrightarrow ^3}{\!P_0}$ transitions. The approach requires conservation of stoichiometry, confirmed within experimental uncertainty by a 1D fluid model.

View Article and Find Full Text PDF

The contribution of higher vibrational levels to the rotational spectrum of linear polyatomic molecules with a center of symmetry (CO and CH) is assessed. An apparent nuclear degeneracy is analytically formulated by vibrational averaging and compared to numerical averaging over vibrational levels. It enables inferring the vibrational temperature of the bending and asymmetric stretching modes from the ratio of even to odd peaks in the rotational Raman spectrum.

View Article and Find Full Text PDF

A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4.

View Article and Find Full Text PDF

The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in plasma and their effect on energy efficiency. A common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures (exceeding 10(4) K) and conversion degrees (up to 30%), respectively.

View Article and Find Full Text PDF