IEEE J Biomed Health Inform
April 2020
The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT).
View Article and Find Full Text PDFRetinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed.
View Article and Find Full Text PDFWe propose an automated segmentation method to detect, segment, and quantify hyperreflective foci (HFs) in three-dimensional (3-D) spectral domain optical coherence tomography (SD-OCT). The algorithm is divided into three stages: preprocessing, layer segmentation, and HF segmentation. In this paper, a supervised classifier (random forest) was used to produce the set of boundary probabilities in which an optimal graph search method was then applied to identify and produce the layer segmentation using the Sobel edge algorithm.
View Article and Find Full Text PDF