Publications by authors named "Beizhen Xie"

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid advancements in aerospace technology have made it possible to sustain long-term life and economic activity in Low Earth Orbit (LEO), but the reliance on Earth for essential supplies poses challenges.
  • The development of effective water treatment technologies for microgravity is crucial to support permanent human bases in space.
  • The paper reviews past scientific research to propose future directions for drinking water treatment in microgravity and introduces a new concept for space aquatic chemistry tailored to closed-loop systems.
View Article and Find Full Text PDF

Water toxicity determination with electrochemically active bacteria (EAB) is promising in the early warning of water pollution. However, limited by tedious biofilm formation, natural EAB biofilms are uncapable of the instant detection of water toxicity, resulting in the failure for the emergency monitoring of water pollution. To solve this problem, a novel method for the rapid construction of EAB biofilms using magnetic adsorption was established, and the performance of instant water toxicity detection with magnetically-constructed EAB biofilm was investigated.

View Article and Find Full Text PDF

Electrochemically active microorganisms (EAMs) play an important role in the fields of environment and energy. is the most common EAM. Research into contributes to a deeper comprehension of EAMs and expands practical applications.

View Article and Find Full Text PDF

Our previous studies have reported water toxicity determination with a fresh electrochemically active bacteria (EAB) suspension as the sensing element, which exhibits high sensitivity and has great prospects in providing early warning about water pollution. However, because the preparation of fresh EAB suspensions is time-consuming, these studies are not suitable for the on-site determination of water toxicity. To solve this problem, this study investigated the rapid preparation of an EAB suspension by the rehydration of freeze-dried EABs and established a novel method for the on-site determination of water toxicity based on the freeze-dried EAB model strain Shewanella oneidensis MR-1.

View Article and Find Full Text PDF

Polarity reversal is one of the effective strategies to rapidly start up denitrifying BESs,but the long-term performances of the denitrifying BESs operated under polarity reversal receive little attention. This study investigated the effects of periodic polarity reversal (PPR) and polarity reversal once only (PRO) on the long-term performances of denitrifying BESs. Repeatable oxidative and reductive currents were observed in the BESs obtained by PPR (PPR-BESs).

View Article and Find Full Text PDF

Long-term unbalanced diet might lead to intestinal malodorous gas generation and inflammation, which would cause health problems, especially in confined environment. In this study, the effects of high-fat and high-protein diets from different nutrient sources, including casein lard, soy protein and soybean oil, and pork protein and lard, respectively, on the differences of malodorous gas compounds emission and inflammation in rats were explored as well as the correlation with gut microbiota. The results showed that all the high-fat and high-protein diets could induce organ damage, abnormal serum biochemical indexes and inflammation.

View Article and Find Full Text PDF

Water toxicity detection is of great significance to ensure the safety of water supply. With suspended electrochemically active bacteria (EAB) as the sensing element, a novel microbial electrochemical sensor (MES) has recently been reported for the real-time detection of water toxicity, but its practical applications need to further improve the sensitivity. Extracellular electron transfer (EET) is an important factor affecting MES performance.

View Article and Find Full Text PDF

Water recycle systems have important implications to realize material circulation in biological regeneration life support systems, which is of significance for long-term space missions and future planetary base. Based on membrane biological activated carbon reactor (MBAR) technologies, the 'Lunar Palace 365' experiment established various treatment processes for condensate wastewater, domestic wastewater, urine, and used nutrient solutions. The 370-day operation data showed the COD index of purified condensate wastewater decreased to 0.

View Article and Find Full Text PDF

Bioregenerative Life Support System (BLSS) is a closed artificial ecosystem and could provide oxygen, food, water and other substrates for long-term deep space survival. The treatment and recycle of the solid waste are crucial and rate-limiting steps in BLSS, and it's reported that the solid waste such as the inedible plants and human feces could be fermented aerobically and then reused as fertilizer for growing plants in BLSS, which may be an effective way to improve the solid waste recycling rate. However, the recycling performance and the effect on the system need to be evaluated.

View Article and Find Full Text PDF

Bioregenerative Life Support System (BLSS) is a closed artificial ecosystem and could provide oxygen, food, water and other substances for space survival. Solid waste treatment is a key rate-limiting step in BLSS. In this study, solid wastes including wheat straw, human and yellow mealworm feces were disposed in a semi-continuous bio-convertor for 105 days in a ground-based experimental BLSS platform (Lunar Palace 1).

View Article and Find Full Text PDF

This study for the first time proposed a method for simultaneously measuring BOD and nitrate in water using electrochemically active bacteria. Firstly, the bidirectional extracellular electron transfer (EET) capability of a model electricigen Shewanella loihica PV-4 was revealed. Then, based on the respective outward and inward EET, S.

View Article and Find Full Text PDF

Fluid dynamics in the anodic chamber of a microbial fuel cell (MFC) is a key factor affecting the distribution of substrates and the efficiency of mass transport. However, the effect of hydrodynamics on MFC based biosensor (MFC-Biosensor) sensitivity has not been established. In this study, the three-dimension anode flow field of a two chamber MFC was visualized, and anodic configuration optimized by a reasonable serpentine flow field and inlet/outlet settings.

View Article and Find Full Text PDF

A relatively poor sensitivity is a critical challenge for the application of microbial fuel cell biosensors (MFC-biosensors). This study investigated the effects of two control modes on sensor sensitivity and revealed the underlying bioelectrochemical mechanism. The results demonstrated that the sensitivity of an S.

View Article and Find Full Text PDF

Traditional microbial fuel cell based biosensor (MFC-Biosensor) utilizes bioanode as sensing element and delivers high sensitivity for single toxic shock but it fails to alert the combined shock of organic matter (OM)/toxic agent (TA). To address this limitation, this study developed a sequential flowing membrane-less MFC based biosensor (SMFC-Biosensor) using both bioanode and biocathode for toxicity monitoring. Results demonstrated the shocks of 1.

View Article and Find Full Text PDF

The relatively poor sensitivity is the main bottleneck restricting the application of microbial fuel cell biosensor (MFC-biosensor) for toxicity monitoring. Previous studies have shown that external resistance (R) had an obvious effect on sensor sensitivity. However, these studies reported different results and the reason of this discrepancy was not clear.

View Article and Find Full Text PDF

Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula.

View Article and Find Full Text PDF

High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN.

View Article and Find Full Text PDF

Carbon cloth with brush-like polyaniline (BL-PANI) nanowire arrays generated on the surface was utilized as anode material in this study to improve the power output of MFCs. A novel pulsed voltage method was applied to fabricate BL-PANI with PANI nanowires of ∼230nm of length. By using BL-PANI modified carbon cloth as anode, the power output was improved by 58.

View Article and Find Full Text PDF

Bioregenerative life-support systems (BLSS) address interactions between organisms and their environment as an integrated system through the study of factors that regulate the pools and fluxes of materials and energy through ecological systems. As a simple model, using BLSS is very important in the investigation of element cycling and energy flux for sustainable development on Earth. A 105-day experiment with a high degree of closure was carried out in this system from February to May, 2014, with three volunteers.

View Article and Find Full Text PDF

To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014.

View Article and Find Full Text PDF

Anaerobic-Anoxic-Oxic (AA/O) wastewater treatment process is a widely used wastewater treatment process for simultaneous nitrogen and phosphorus removal. Microbial fuel cell (MFC) can generate electricity and treat the organic wastewater simultaneously. Our previous research showed that embedding MFC in AA/O wastewater treatment process could enhance the pollutants removal efficiency.

View Article and Find Full Text PDF

Yellow mealworm (Tenebrio molitor L.) is one of the animal candidates for space bioregenerative life support systems. In this study, T.

View Article and Find Full Text PDF

Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency remains one of the major bottlenecks for its practical application. We report firstly that the microbial current generated by Shewanella loihica PV-4 (S.

View Article and Find Full Text PDF

Energy consumption and output are two very important standards for evaluating the reliability of electric light sources when plants are grown in a controlled environment. As a primary source of energy, light is one of the most important environmental factors for wheat growth. The objective of this study was to investigate the influences of light/dark cycle operation with millisecond-scale period on the growth of wheat, photosynthetic characteristics, antioxidant capacity and biomass yield and quality during their life cycle.

View Article and Find Full Text PDF