Publications by authors named "Beiying Zhou"

The development of multi-level anti-counterfeiting techniques is of great significance for economics and security issues, particularly the newly emerged temporal-domain techniques based on lifetime coding. However, the intricate reading methods required to obtain temporal-level information are inevitably cumbersome and expensive, which greatly limits the practical applications of these techniques. Herein, we report a novel, unclonable time-domain anti-counterfeiting strategy for the first time, which is achieved using photo-responsive ZnSe:Mn/ZnS quantum dots (QDs) with dynamic luminescence and can be authenticated by the naked eye.

View Article and Find Full Text PDF

Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module.

View Article and Find Full Text PDF

Replacing traditional luminous silicone or resins with phosphor in ceramics (PiCs) as color converters has been proposed as an efficient way to improve thermal stability of high-power white light-emitting diodes (WLEDs). However, excessive light scattering in existing PiCs results in enormous phosphor-converted light losses, which makes the luminosity of current PiCs color converters less efficient and means that they can only be used in devices working in reflective mode. By introducing nano wave plate structuring and Rayleigh scattering, luminous hydroxyapatite (HA)-YAG: Ce ceramics are prepared from mesoporous HA nanorods and YAG: Ce phosphors at 850 °C, enabling for the first time WLEDs equipped with PiC color converters in transmission mode.

View Article and Find Full Text PDF

Narrowband ultraviolet (UV) photodetectors are highly desired in multiple areas. Photodetectors based on organic-inorganic nanocomposites offer high sensitivity, widely adjustable response range, light weight, and low-temperature solution processibility. However, the broad absorption range of organic and inorganic semiconductor materials makes it difficult to achieve a narrowband detection feature for nanocomposite photodetectors.

View Article and Find Full Text PDF

A facile and economical one-pot strategy has been developed for the synthesis of water-solute CdTe and CdTe/ZnS core/shell quantum dots (QDs) using tellurium dioxide (TeO2) as a tellurium precursor and thioglycolic acid (TGA) as stabilizer without any pre-treatment and inert atmosphere protection. As-synthesized QDs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), X-ray powder diffraction (XRD), UV-vis and photoluminescence (PL). The spherical particles were uniformly distributed with the average diameters of 3.

View Article and Find Full Text PDF