Micro-computed tomography (microCT) of small animals has led to a more detailed and more accurate three-dimensional (3D) view on different anatomical structures in the last years. Here, we present the cranial anatomy of two frog species providing descriptions of bone structures and soft tissues of the feeding apparatus with comments to possible relations to habitat and feeding ecology. Calyptocephalella gayi, known for its aquatic lifestyle, is not restricted to aquatic feeding but also feeds terrestrially using lingual prehension.
View Article and Find Full Text PDFCranial kinesis refers to intracranial movements in the vertebrate skull that do not concern the jaw joint, the middle ear or the hypobranchial skeleton. Different kinds of cranial kinesis have been reported for lizards, including mesokinesis, metakinesis, amphikinesis (simultaneous mesokinesis and metakinesis) and streptostyly. Streptostyly is considered relatively widespread within lizards, whereas mesokinesis has been documented only for geckos, varanids and anguids.
View Article and Find Full Text PDFDual-energy computed tomography (DECT) uses two different x-ray energy spectra in order to differentiate between tissues, materials or elements in a single sample or patient. DECT is becoming increasingly popular in clinical imaging and preclinical in vivo imaging of small animal models, but there have been only very few reports on ex vivo DECT of biological samples at microscopic resolutions. The present study has three main aims.
View Article and Find Full Text PDFIn tetrapods, the ability to ingest food on land is based on certain morphological features of the oropharynx in general and the feeding apparatus in particular. Recent paleoecological studies imply that terrestrial feeding has evolved secondarily in turtles, so they had to meet the morphological oropharyngeal requirements independently to other amniotes. This study is designed to improve our limited knowledge about the oropharyngeal morphology of tortoises by analyzing in detail the oropharynx in Manouria emys emys.
View Article and Find Full Text PDFIn tetrapods, the oropharyngeal cavity and its anatomical structures are mainly, but not exclusively, responsible for the uptake and intraoral transport of food. In this study, we provide structural evidence for a second function of the oropharynx in the North American common musk turtle, Sternotherus odoratus, Kinosternidae: aquatic gas exchange. Using high-speed video, we demonstrate that S.
View Article and Find Full Text PDFThe ultrastructure of the dorsal lingual epithelium of the semi-aquatic West African mud turtle, Pelusios castaneus, is described. Our goal is to give additional information to previous studies of this species such as feeding pattern analysis and gross morphology. Tissue specimens were fixed in modified Karnovsky solution followed by osmium tetroxide, embedded in epoxy resin and observed using light and transmission electron microscopy.
View Article and Find Full Text PDFFeeding mechanics of vertebrates depend on physical constraints of the surrounding media, water or air. Such functions are inseparably combined with form. The aim of this study is to show this linkage for the pleurodiran freshwater turtle Pelusios castaneus and, additionally, to point out the major functional and biomechanical distinctions between aquatic and terrestrial feeding turtles as well as several intermediate forms.
View Article and Find Full Text PDFBackground: Turtles are adapted to different environments, such as freshwater, marine, and terrestrial habitats. Examination of histological and ultrastructural features of the dorsal lingual epithelium of the red-eared turtle, Trachemys scripta elegans, and comparison of the results with those of other turtles should elucidate the relationship between the morphology of tongues as well as the fine structure of lingual epithelia and chelonian feeding mechanisms.
Methods: Light microscopical (LM) and scanning (SEM) and transmission (TEM) electron microscopical methods were used.
Scanning electron microscopy reveals that the flat tongue of Platemys pallidipectoris has shallow grooves and no lingual papillae. The surface of the tongue is covered with dome-shaped bulges, each corresponding to a single cell. Short microvilli are distributed over the cell surface.
View Article and Find Full Text PDF