Gastric cancer is the second leading cause of death from cancer worldwide, with an approximately 20% 5-year survival rate. To identify molecular subtypes associated with the clinical prognosis, in addition to genetic aberrations for potential targeted therapeutics, we conducted a comprehensive whole-genome analysis of 131 Chinese gastric cancer tissue specimens using whole-genome array comparative genomic hybridization. The analyses revealed gene focal amplifications, including CTSB, PRKCI, PAK1, STARD13, KRAS, and ABCC4, in addition to ERBB2, FGFR2, and MET.
View Article and Find Full Text PDFPurpose: FGFR gene aberrations are associated with tumor growth and survival. We explored the role of FGFR2 amplification in gastric cancer and the therapeutic potential of AZD4547, a potent and selective ATP-competitive receptor tyrosine kinase inhibitor of fibroblast growth factor receptor (FGFR)1-3, in patients with FGFR2-amplified gastric cancer.
Experimental Design: Array-comparative genomic hybridization and FISH were used to identify FGFR2 amplification in gastric cancer patient tumor samples.
Nitric oxide ((.-)NO) is an important physiological signaling molecule and potent vasodilator. Recently, we have shown abnormal (.
View Article and Find Full Text PDF