The ability of FNR to sense and respond to cellular O(2) levels depends on its [4Fe-4S](2+) cluster. In the presence of O(2), the [4Fe-4S](2+) cluster is converted to a [2Fe-2S](2+) cluster, which inactivates FNR as a transcriptional regulator. In this study, we demonstrate that approximately 2 Fe(2+) ions are released from the reaction of O(2) with the [4Fe-4S](2+) cluster.
View Article and Find Full Text PDFThe oxygen sensing ability of the transcription factor FNR depends on the presence of a [4Fe-4S]2+ cluster. In the presence of O2, conversion of the [4Fe-4S]2+ cluster to a [2Fe-2S]2+ cluster inactivates FNR, but the fate of the [2Fe-2S]2+ cluster in cells grown under aerobic conditions is unknown. The present study shows that the predominant form of FNR in aerobic cells is apo-FNR (cluster-less FNR) indicating that the [2Fe-2S]2+ cluster, like the [4Fe-4S]2+ cluster, is not stable under these conditions.
View Article and Find Full Text PDFFe-S clusters are key to the sensing and transcription functions of three transcription factors, FNR, IscR and SoxR. All three proteins were discovered in Escherichia coli but experimental data and bioinformatic predictions suggest that homologs of these proteins exist in other bacterial species, highlighting the widespread nature of Fe-S-dependent regulatory networks. In addition, the nearly ubiquitous citric acid cycle enzyme, aconitase, plays a role in translational regulation in E.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2002
An attempt is made to retrace, from personal experience, the discovery of redox-reactive non-heme iron in living matter, which turned out to occur in the form of iron-sulfur (Fe-S) clusters, and then to recount the immediate application of this knowledge in exploring the composition of the mitochondrial respiratory chain, and in the rather detailed description of the workings of its components and, for the purposes of the present volume, of succinate dehydrogenase. The relationship of these events to the general status of technology and the available methodology and instrumentation is considered in some detail, with the conclusion that there scarcely was a way that these discoveries could have been made earlier. It is then shown how methods, techniques and interpretations of results were developed and evolved during the applications that were made to a complex problem such as that of the composition, structure and functioning of succinate dehydrogenase.
View Article and Find Full Text PDFIscR (iron-sulfur cluster regulator) is encoded by an ORF located immediately upstream of genes coding for the Escherichia coli Fe-S cluster assembly proteins, IscS, IscU, and IscA. IscR shares amino acid similarity with MarA, a member of the MarA/SoxS/Rob family of transcription factors. In this study, we found that IscR functions as a repressor of the iscRSUA operon, because strains deleted for iscR have increased expression of this operon.
View Article and Find Full Text PDFA minor Hsp70 chaperone of the mitochondrial matrix of Saccharomyces cerevisiae, Ssq1, is involved in the formation or repair of Fe/S clusters and/or mitochondrial iron metabolism. Here, we report evidence that Jac1, a J-type chaperone of the mitochondrial matrix, is the partner of Ssq1 in this process. Reduced activity of Jac1 results in a decrease in activity of Fe/S containing mitochondrial proteins and an accumulation of iron in mitochondria.
View Article and Find Full Text PDFRecent progress in a number of areas of biochemistry and biology has drawn attention to the critical importance of sulfur in the biosynthesis of vital cofactors and active sites in proteins, and in the complex reaction mechanisms often involved. This brief review is intended as a broad overview of this currently rapidly moving field of sulfur biochemistry, for those who are interested or are involved in one or the other aspect of it, a synopsis by one who has stumbled into this field from several directions in the course of time. Only for iron are metal-sulfur relationships discussed in detail, as the iron-sulfur subfield is one of the most active areas.
View Article and Find Full Text PDFThe mitochondrial matrix of the yeast Saccharomyces cerevisiae contains two molecular chaperones of the Hsp70 class, Ssc1 and Ssq1. We report that Ssc1 and Ssq1 play sequential roles in the import and maturation of the yeast frataxin homologue (Yfh1). In vitro, radiolabeled Yfh1 was not imported into ssc1-3 mutant mitochondria, remaining in a protease-sensitive precursor form.
View Article and Find Full Text PDFThis article is a survey of the properties and functions of Fe-S proteins under the following headings: sulfur and iron; iron-sulfur clusters; evolution of cofactor use; early observations; complex and extended clusters; sulfur exchange and core interconversions; synthesis and biosynthesis of Fe-S clusters; functions of Fe-S clusters: electron transfer, electron delocalization, spin states and magnetism, covalency of sulfur bonds; non-electron transfer functions of Fe-S clusters: substrate binding and catalysis, regulatory and sensing functions.
View Article and Find Full Text PDFTo understand the role of the [4Fe-4S](2+) cluster in controlling the activity of the Escherichia coli transcription factor FNR (fumarate nitrate reduction) during changes in O(2) availability, we have characterized a mutant FNR protein containing a substitution of Leu-28 with His (FNR-L28H) which, unlike its wild type (WT) counterpart, is functional under aerobic growth conditions. The His-28 substitution appears to stabilize the [4Fe-4S](2+) cluster of FNR-L28H in the presence of O(2) because air-exposed FNR-L28H did not undergo the rapid [4Fe-4S](2+) to [2Fe-2S](2+) cluster conversion or concomitant loss in site-specific DNA binding and dimerization, which are characteristic of WT-FNR under these conditions. This increased cluster stability was not a result of His-28 replacing the WT-FNR cluster ligands because substitution of any of these four Cys residues (cysteine 20, 23, 29, or 122) with Ser resulted in [4Fe-4S](2+) cluster-deficient preparations of FNR-L28H.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1999
nifU of nitrogen-fixing bacteria is involved in the synthesis of the Fe-S cluster of nitrogenase. In a synthetic lethal screen with the mitochondrial heat shock protein (HSP)70, SSQ1, we identified a gene of Saccharomyces cerevisiae, NFU1, which encodes a protein with sequence identity to the C-terminal domain of NifU. Two other yeast genes were found to encode proteins related to the N-terminal domain of bacterial NifU.
View Article and Find Full Text PDFIn the past five to ten years, it has become increasingly apparent that the function of Fe-S clusters is not limited to electron transfer, a function implicit in their discovery. We now know that the vulnerability of these structures to oxidative destruction is used by nature in sensing O2, iron, and possibly also nitric oxide. Changes in the oxidation state of Fe-S clusters can also serve as a reversible switch.
View Article and Find Full Text PDFFEMS Microbiol Rev
December 1998
FNR is a global regulator that controls transcription of genes whose functions facilitate adaptation to growth under O2 limiting conditions. It has long been appreciated that the activity of FNR must be regulated by O2 availability, since FNR dependent gene expression is observed in vivo only under anaerobic conditions, while similar levels of this protein are present in both aerobic and anaerobic grown cells. Recent progress in this field has shown that anaerobically purified FNR contains a [4Fe-4S]2+ cluster and that this [4Fe-4S]2+ cluster is sufficiently unstable toward O2 to make it suitable as an O2 sensor.
View Article and Find Full Text PDFThe global regulator FNR (for fumarate nitrate reduction) controls the transcription of >100 genes whose products facilitate adaptation of Escherichia coli to growth under O2-limiting conditions. Previous Mössbauer studies have shown that anaerobically purified FNR contains a [4Fe-4S]2+ cluster that, on exposure to oxygen, is converted into a [2Fe-2S]2+ cluster, a process that decreases DNA binding by FNR. Using 57Fe Mössbauer spectroscopy of E.
View Article and Find Full Text PDFLysine 2,3-aminomutase catalyzes the interconversion of l-alpha-lysine and l-beta-lysine. The enzyme contains an iron-sulfur cluster with unusual properties, and it requires pyridoxal-5'-phosphate (PLP) and S-adenosylmethionine (AdoMet) for activity. The reaction proceeds by a substrate radical rearrangement mechanism, in which the external aldimine formed between PLP and lysine is initially converted into a lysyl-radical intermediate by hydrogen abstraction from C3.
View Article and Find Full Text PDFCellular studies have indicated that some Fe-S proteins, and the aconitases in particular, are targets for nitric oxide. Specifically, NO has been implicated in the intracellular process of the conversion of active cytosolic aconitase containing a [4Fe-4S] cluster, to its apo-form which functions as an iron-regulatory protein. We have undertaken the in vitro study of the reaction of NO with purified forms of both mitochondrial and cytosolic aconitases by following enzyme activity and by observing the formation of EPR signals not shown by the original reactants.
View Article and Find Full Text PDFIron-sulfur proteins are found in all life forms. Most frequently, they contain Fe2S2, Fe3S4, and Fe4S4 clusters. These modular clusters undergo oxidation-reduction reactions, may be inserted or removed from proteins, can influence protein structure by preferential side chain ligation, and can be interconverted.
View Article and Find Full Text PDFThe transcription factor FNR (fumarate nitrate reduction) requires the presence of an iron-sulfur (Fe-S) cluster for its function as a global transcription regulator in Escherichia coli when oxygen becomes scarce. To define the oxidation state and type of Fe-S cluster present in the active form of FNR, we have studied anaerobically purified FNR with Mössbauer spectroscopy. Our data showed that this form of FNR contained a [4Fe-4S]2+ cluster (delta = 0.
View Article and Find Full Text PDFThis review traces the history of understanding of the CuA site in cytochrome c oxidase (COX) from the beginnings, when few believed that there was any significant Cu in COX, to the verification of three atoms Cu/monomer and to the final identification of the site as a dinuclear, Cys-bridged average valence Cu1.5+ ..
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 1996
It has been known for many years that fluoroacetate and fluorocitrate when metabolized are highly toxic, and that at least one effect of fluorocitrate is to inactivate aconitase. In this paper we present evidence supporting the hypothesis that the (-)-erythro diastereomer of 2-fluorocitrate acts as a mechanism based inhibitor of aconitase by first being converted to fluoro-cis-aconitate, followed by addition of hydroxide and with loss of fluoride to form 4-hydroxy-trans-aconitate (HTn), which binds very tightly, but not covalently, to the enzyme. Formation of HTn by these reactions is in accord with the working model for the enzyme mechanism.
View Article and Find Full Text PDF