Publications by authors named "Beika Lu"

The response of individual animals to mating signals depends on the sexual identity of the individual and the genetics of the mating targets, which represent the mating social context (social environment). However, how social signals are sensed and integrated during mating decisions remains a mystery. One of the models for understanding mating behaviors in molecular and cellular terms is the male courtship ritual in the fruit fly (Drosophila melanogaster).

View Article and Find Full Text PDF

Degenerin/epithelial sodium channels (DEG/ENaC) represent a large family of animal-specific membrane proteins. Although the physiological functions of most family members are not known, some have been shown to act as nonvoltage gated, amiloride-sensitive sodium channels. The DEG/ENaC family is exceptionally large in genomes of Drosophila species relative to vertebrates and other insects.

View Article and Find Full Text PDF

Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors.

View Article and Find Full Text PDF

Degenerin/epithelial Na(+) channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na(+) transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together.

View Article and Find Full Text PDF

The adenylate cyclase/cAMP signaling pathway and adult mushroom bodies (MBs) have been shown to play an important role in sleep regulation in Drosophila. The amnesiac (amn) gene, encodes a neuropeptide that is homologous with vertebrate pituitary adenylate cyclase-activating peptide (PACAP), is expressed in dorsal paired medial (DPM) neurons and is required for the middle-term memory (MTM) in flies. However, the role of amn on regulation of sleep is as yet unknown.

View Article and Find Full Text PDF