Background: Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate.
View Article and Find Full Text PDFPrevious studies have demonstrated that melatonin could ameliorate oxidative stress during the cryopreservation of mouse MII oocytes and their in vitro culture after parthenogenetic activation. However, the underlying molecular mechanism remained poorly understood. This study was conducted to investigate whether melatonin could modulate the oxidative stress in the parthenogenetic 2-cell embryos derived from vitrified-warmed oocytes through SIRT1.
View Article and Find Full Text PDFReactive oxygen species (ROS) are involved in neurodegenerative diseases, cancer, and acute hepatitis, and quantification of ROS is critical for the early diagnosis of these diseases. In this work, a novel probe is developed, based on chiral molybdenum diselenide (MoSe ) nanoparticles (NPs) modified by the fluorescent molecule, cyanine 3 (Cy3). Chiral MoSe NPs show intensive circular dichroism (CD) signals at 390 and 550 nm, whereas the fluorescence of Cy3 at 560 nm is quenched by MoSe NPs.
View Article and Find Full Text PDFOocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo.
View Article and Find Full Text PDF