Retinal image quality assessment (RIQA) is crucial for diagnosing various eye diseases and ensuring the accuracy of diagnostic analyses based on retinal fundus images. Traditional deep convolutional neural networks (CNNs) for RIQA face challenges such as over-reliance on RGB image brightness and difficulty in differentiating closely ranked image quality categories. To address these issues, we introduced the Dual-Path Frequency-domain Cross-attention Network (DFC-Net), which integrates RGB images and contrast-enhanced images using contrast-limited adaptive histogram equalization (CLAHE) as dual inputs.
View Article and Find Full Text PDFObjective: Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Age-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are crucial for effective treatment.
View Article and Find Full Text PDFBackground: In laparoscopic liver surgery, accurately predicting the displacement of key intrahepatic anatomical structures is crucial for informing the doctor's intraoperative decision-making. However, due to the constrained surgical perspective, only a partial surface of the liver is typically visible. Consequently, the utilization of non-rigid volume to surface registration methods becomes essential.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2024
Background And Objectives: Automatic tumor segmentation plays a crucial role in cancer diagnosis and treatment planning. Computed tomography (CT) and positron emission tomography (PET) are extensively employed for their complementary medical information. However, existing methods ignore bilateral cross-modal interaction of global features during feature extraction, and they underutilize multi-stage tumor boundary features.
View Article and Find Full Text PDFUptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing.
View Article and Find Full Text PDFDeep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is a severe ocular complication of diabetes that can lead to vision damage and even blindness. Currently, traditional deep convolutional neural networks (CNNs) used for DR grading tasks face two primary challenges: (1) insensitivity to minority classes due to imbalanced data distribution, and (2) neglecting the relationship between the left and right eyes by utilizing the fundus image of only one eye for training without differentiating between them. To tackle these challenges, we proposed the DRGCNN (DR Grading CNN) model.
View Article and Find Full Text PDFBackground And Objective: Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder.
Methods: We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD.
Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide with high recurrence rate. Identifying MDD patients, particularly those with recurrent episodes with resting-state fMRI, may reveal the relationship between MDD and brain function. We proposed a Transformer-Encoder model, which utilized functional connectivity extracted from large-scale multisite rs-fMRI datasets to classify MDD and HC.
View Article and Find Full Text PDFSensors (Basel)
November 2023
Websites can improve their security and protect against harmful Internet attacks by incorporating CAPTCHA verification, which assists in distinguishing between human users and robots. Among the various types of CAPTCHA, the most prevalent variant involves text-based challenges that are intentionally designed to be easily understandable by humans while presenting a difficulty for machines or robots in recognizing them. Nevertheless, due to significant advancements in deep learning, constructing convolutional neural network (CNN)-based models that possess the capability of effectively recognizing text-based CAPTCHAs has become considerably simpler.
View Article and Find Full Text PDFObjective: To promote research on knowledge extraction and knowledge graph construction of chest discomfort medical cases in Traditional Chinese Medicine (TCM), this paper focuses on their named entity recognition (NER). The recognition task includes six entity types: "syndrome", "symptom", "etiology and pathogenesis", "treatment method", "medication", and "prescription".
Methods: We annotated data in a BIO (B-begin, I-inside, O-outside) manner.
Comput Methods Programs Biomed
December 2023
Background: With the outbreak and spread of COVID-19 worldwide, limited ventilators fail to meet the surging demand for mechanical ventilation in the ICU. Clinical models based on structured data that have been proposed to rationalize ventilator allocation often suffer from poor ductility due to fixed fields and laborious normalization processes. The advent of pre-trained models and downstream fine-tuning methods allows for learning large amounts of unstructured clinical text for different tasks.
View Article and Find Full Text PDFStructural magnetic resonance imaging (sMRI), which can reflect cerebral atrophy, plays an important role in the early detection of Alzheimer's disease (AD). However, the information provided by analyzing only the morphological changes in sMRI is relatively limited, and the assessment of the atrophy degree is subjective. Therefore, it is meaningful to combine sMRI with other clinical information to acquire complementary diagnosis information and achieve a more accurate classification of AD.
View Article and Find Full Text PDFBackground: Major depressive disorder (MDD) has a high rate of recurrence. Identifying patients with recurrent MDD is advantageous in adopting prevention strategies to reduce the disabling effects of depression.
Method: We propose a novel feature extraction method that includes dynamic temporal information, and inputs the extracted features into a graph convolutional network (GCN) to achieve classification of recurrent MDD.
IEEE J Biomed Health Inform
August 2023
Segmentation of liver from CT scans is essential in computer-aided liver disease diagnosis and treatment. However, the 2DCNN ignores the 3D context, and the 3DCNN suffers from numerous learnable parameters and high computational cost. In order to overcome this limitation, we propose an Attentive Context-Enhanced Network (AC-E Network) consisting of 1) an attentive context encoding module (ACEM) that can be integrated into the 2D backbone to extract 3D context without a sharp increase in the number of learnable parameters; 2) a dual segmentation branch including complemental loss making the network attend to both the liver region and boundary so that getting the segmented liver surface with high accuracy.
View Article and Find Full Text PDFDiabetes Metab Syndr
September 2022
Background And Aims: Computer-aided diagnosis and prognosis rely heavily on fully automatic segmentation of abdominal fat tissue using Emission Tomography images. The identification of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in abdomen fat faces two main challenges: (1) the great difficulties in comparison to multi-stage semantic segmentation (VAT and SAT), and (2) the subtle differences due to the high similarity of the two classes in abdomen fat and complicated VAT distribution.
Methods: In this research, we built an automated convolutional neural network (A-CNN) for segmenting Abdominal adipose tissue (AAT) from radiology images.
Major depressive disorder (MDD) is a serious and widespread psychiatric disorder. Previous studies mainly focused on cerebrum functional connectivity, and the sample size was relatively small. However, functional connectivity is undirected.
View Article and Find Full Text PDFDynamic causal modeling (DCM) is a tool used for effective connectivity (EC) estimation in neuroimage analysis. But it is a model-driven analysis method, and the structure of the EC network needs to be determined in advance based on a large amount of prior knowledge. This characteristic makes it difficult to apply DCM to the exploratory brain network analysis.
View Article and Find Full Text PDFWith modern management of primary liver cancer shifting towards non-invasive diagnostics, accurate tumor classification on medical imaging is increasingly critical for disease surveillance and appropriate targeting of therapy. Recent advancements in machine learning raise the possibility of automated tools that can accelerate workflow, enhance performance, and increase the accessibility of artificial intelligence to clinical researchers. We explore the use of an automated Tree-Based Optimization Tool that leverages a genetic programming algorithm for differentiation of the two common primary liver cancers on multiphasic MRI.
View Article and Find Full Text PDF