Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.
View Article and Find Full Text PDFA transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2013
An acetic-acid-based sol-gel method was used to deposit lead lanthanum zirconate titanate (PLZT, 8/52/48) thin films on either platinized silicon (Pt/Si) or nickel buffered by a lanthanum nickel oxide buffer layer (LNO/Ni). X-ray diffraction and scanning electron microscopy of the samples revealed that dense polycrystalline PLZT thin films formed without apparent defects or secondary phases. The dielectric breakdown strength was greater in PLZT thin films deposited on LNO/Ni compared with those on Pt/Si, leading to better energy storage.
View Article and Find Full Text PDF