Publications by authors named "Beierkuhnlein C"

Oceanic islands are considered the classic arenas for allopatric speciation and adaptive radiation. Established concepts of speciation and endemism are strongly focused on spatial and temporal scales. However, biotic interactions and ecological drivers, although widely recognized as playing a role, still need to be integrated into our understanding of these processes.

View Article and Find Full Text PDF
Article Synopsis
  • Since the first local transmission of West Nile Virus (WNV) was detected in Germany in 2018, it has become endemic and is spreading due to climate change creating suitable conditions for vector mosquitoes.
  • Researchers developed a process-based epidemic model using environmental and epidemiological data to understand WNV transmission dynamics, focusing on factors like temperature, precipitation, and humidity.
  • The model indicates a likely spread of WNV towards western Germany, with high-risk areas identified due to environmental factors favoring mosquito populations and migratory birds.
View Article and Find Full Text PDF

In 2021, the Tajogaite Volcano erupted along the western slope of the Cumbre Vieja on the island of La Palma, Canary Islands, Spain. Volcanic tephra blanketed a substantial proportion of the island. By our estimations, approximately 23,000,000 m of pyroclastic ashes and more coarse-grained particles were deposited unto La Palma's land surface in addition to the lava flow.

View Article and Find Full Text PDF

A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the 'temperature range squeeze' hypothesis, predicting a negative range size-temperature variability relationship.

View Article and Find Full Text PDF

The Natura 2000 (N2K) protected area (PA) network is a crucial tool to limit biodiversity loss in Europe. Despite covering 18% of the European Union's (EU) land area, its effectiveness at conserving biodiversity across taxa and biogeographic regions remains uncertain. Testing this effectiveness is, however, difficult because it requires considering the nonrandom location of PAs, and many possible confounding factors.

View Article and Find Full Text PDF

The high proportion of woody plant species on oceanic islands has hitherto been explained mainly by gradual adaptation to climatic conditions. Here, we present a novel hypothesis that such woodiness is adaptative to volcanic ash (tephra) deposition. Oceanic islands are subject to frequent eruptions with substantial and widespread ash deposition on evolutionary time scales.

View Article and Find Full Text PDF

Grassland ecosystems are affected by the increasing frequency and intensity of extreme climate events (e.g., droughts).

View Article and Find Full Text PDF

Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them.

View Article and Find Full Text PDF

Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species.

View Article and Find Full Text PDF

Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages.

View Article and Find Full Text PDF

Volcanic activity provides a unique opportunity to study the ecological responses of organisms to catastrophic environmental destruction as an essential driver of biodiversity change on islands. However, despite this great scientific interest, no study of the biodiversity at an erupting volcano has yet been undertaken. On La Palma (Canary archipelago), we quantified the main species affected and their fate during the 85-day eruption (September-December 2021).

View Article and Find Full Text PDF

The strategic goals of the United Nations and the Aichi Targets for biodiversity conservation have not been met. Instead, biodiversity has continued to rapidly decrease, especially in developing countries. Setting a new global biodiversity framework requires clarifying future priorities and strategies to bridge challenges and provide representative solutions.

View Article and Find Full Text PDF

Biodiversity monitoring is an almost inconceivable challenge at the scale of the entire Earth. The current (and soon to be flown) generation of spaceborne and airborne optical sensors (i.e.

View Article and Find Full Text PDF

Understanding the role of biodiversity in maintaining ecosystem functioning and stability under increasing frequency and magnitude of climatic extremes has fascinated ecologists for decades. Although growing evidence suggests that biodiversity affects ecosystem productivity and buffers ecosystem against climatic extremes, it remains unclear whether the stability of an ecosystem is caused by its resistance against disturbances or resilience towards perturbations or both. In attempting to explore how species richness affects resistance and resilience of above-ground net primary productivity (ANPP) against climatic extremes, we analyzed the grassland ANPP of the long-running (1997-2020) Bayreuth Biodiversity experiment in Germany.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is altering the distribution and functioning of species and ecosystems, particularly in vulnerable areas like the afroalpine ecosystems of tropical Africa.
  • The study predicts an upward movement and increased dominance of ericaceous vegetation, which may threaten the unique biodiversity of the endemic species in the Sanetti plateau.
  • Utilizing various modeling methods and climate scenarios, the research shows that ericaceous vegetation is likely to expand in midaltitudes while retreating from lower elevations, highlighting significant changes in this important biodiversity hotspot.
View Article and Find Full Text PDF

Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map.

View Article and Find Full Text PDF

Habitat loss from anthropogenic development has led to an unprecedented decline in global biodiversity. Protected areas (PAs) exist to counteract this degradation of ecosystems. In the European Union, the Natura 2000 (N2k) network is the basis for continent-wide conservation efforts.

View Article and Find Full Text PDF

Geodiversity promotes biodiversity by increasing habitat heterogeneity. In times of a global biodiversity decline, data about diversity on such geological elements gains importance, also regarding conservation and restoration. In the Canary Islands, phonolitic rocks are geological elements of volcanic origin that represent additional habitat for species.

View Article and Find Full Text PDF

Chikungunya virus disease (chikungunya) is a mosquito-borne infectious disease reported in at least 50 countries, mostly in the tropics. It has spread around the globe within the last two decades, with local outbreaks in Europe. The vector mosquito (Diptera, Culicidae) has already widely established itself in southern Europe and is spreading towards central parts of the continent.

View Article and Find Full Text PDF

Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors.

View Article and Find Full Text PDF
Article Synopsis
  • Epidemiological models are essential for predicting the risk of vector-borne diseases and typically utilize the basic reproduction number (R) to gauge this risk.
  • Different aggregation methods for transforming model outputs into spatial risk maps can lead to varying interpretations, highlighting a lack of standardized approaches.
  • The choice of visualization methods is crucial, as it significantly impacts how risk data is understood, underscoring the importance of careful mapping of both the intensity and duration of outbreak risks.
View Article and Find Full Text PDF

Background: Biogeographical units are widely adopted in ecological research and nature conservation management, even though biogeographical regionalisation is still under scientific debate. The European Environment Agency provided an official map of the European Biogeographical Regions (EBRs), which contains the official boundaries used in the Habitats and Birds Directives. However, these boundaries bisect cells in the official EU 10 km × 10 km grid used for many purposes, including reporting species and habitat data, meaning that 6881 cells overlap two or more regions.

View Article and Find Full Text PDF

Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales.

View Article and Find Full Text PDF

Aim: Due to their longevity and structure, forest ecosystems are particularly affected by climate change with consequences for their biodiversity, functioning, and services to mankind. In the European Union (EU), natural and seminatural forests are protected by the Habitats Directive and the Natura 2000 network. This study aimed to assess the exposure of three legally defined forest habitat types to climate change, namely (a) forests of slopes, screes, and ravines (9180*), (b) bog woodlands (91D0*), and (c) alluvial forests with and (91E0*).

View Article and Find Full Text PDF