Fabrication, characterization, and application of micropatterned one-component poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes for monolayer cell and spheroid culture and temperature-triggered release are reported. Micropatterns of various shapes and sizes were designed to possess a unique functionality imparted by thermoresponsive thin PDEGMA patches, which are cell adhesive at 37 °C, embedded in a much thicker cell-resistant PDEGMA matrix that does not exhibit measurable thermoresponsive properties. Depending on the cell seeding density, PaTu 8988t human pancreatic tumor cells or spheroids were cultured area-selectively, confined by the 40 ± 4 nm thick passivating PDEGMA matrix, and could be released on demand by a mild thermally triggered brush swelling in the 5 ± 1 nm thin regions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2015
Recently, the type of reactions driven by mechanical force has increased significantly; however, the number of methods for activating those mechanochemical reactions stays relatively limited. Furthermore, in situ characterization of a reaction is usually hampered by the inherent properties of conventional methods. In this study, we report a new platform that utilizes mechanical force generated by the swelling of surface tethered weak polyelectrolytes.
View Article and Find Full Text PDFPolydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices.
View Article and Find Full Text PDF