Biomass-derived carbon materials (BDCMs) are widely considered as promising and practical candidates for electrode materials of solid-state supercapacitors (SSCs), due to their low cost, good chemical and mechanical stabilities, excellent electrical conductivity, and high deployment feasibility. Numerous investigations have recently been conducted for sustainably transforming biomass into electrode materials with high electrochemical performance in SSCs, even guided by data-driven approaches. Therefore, this review addresses conventional and emerging synthesis routes for BDCM-based electrode materials and discusses recent advances in energy storage mechanisms and electrochemical performance enhancement of BDCMs for SSCs, improving electrode preparation and performance optimization of BDCMs in a practical and efficient manner.
View Article and Find Full Text PDFCarbon morphology significantly affects the capacitive performance of porous carbons. Biomass-derived porous carbons are usually restricted by inferior capacitive performance owing to their inherently three-dimensional (3D) blocked morphologies. Fabricating two-dimensional (2D) sheet-like morphology is expected to expose more inner space for better electrochemical performance, however, it needs to overcome the self-aggregation of biomass.
View Article and Find Full Text PDFBiomass derived fillers have been developed as sustainable substitution of carbon black (CB) used in rubber industry to reduce the dependence on fossil fuels. Lignin is the abundant component of biomass, but has poor reinforcing performance due to its huge particle size. In this work, we prepared a lignin/silica (LS) hybrid material from rice husks via a facile self-assembly method.
View Article and Find Full Text PDFA three-dimensional hollow tubular porous carbon (SCPC) was prepared from straw cellulose waste through a self-templating method combined with NaOH activation. Straw cellulose acts both as carbon source and structural template. The obtained SCPC exhibits a 3D hierarchical porous network structure.
View Article and Find Full Text PDF