Publications by authors named "Beibei Lai"

Porous liquids (PLs) are a new type of fluid sorbent investigated mainly for the separation of gas mixtures. Here, we explore their application to the separation of miscible liquids, using MEG/water (MEG=monoethylene glycol) and EtOH/water as proof-of-principle. Recovery of used MEG is industrially important but its extraction into conventional solvents from water is difficult.

View Article and Find Full Text PDF
Article Synopsis
  • - Type III porous liquids (PLs), made from solid particles in a liquid phase, show potential for gas separation, but how particle size affects their properties is not well understood.
  • - In an experiment with Al(OH)(fumarate) particles of various sizes in polydimethylsiloxane (PDMS), results indicated that larger particles improve gas uptake rates while also decreasing viscosity and physical stability.
  • - The gas uptake mechanism for these PLs is complex, fitting the Elovich model better than simple kinetics, with a three-step diffusion process revealed, suggesting that larger particles enhance both gas absorption and rapid kinetics more effectively than PDMS alone.
View Article and Find Full Text PDF

Compressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible.

View Article and Find Full Text PDF

The regulation of mitochondria function and health is a central node in tissue maintenance, ageing as well as the pathogenesis of various diseases. However, the maintenance of an active mitochondrial functional state and its quality control mechanisms remain incompletely understood. By studying mice with a mitochondria-targeted reporter that shifts its fluorescence from "green" to "red" with time (MitoTimer), we found MitoTimer fluorescence spectrum was heavily dependent on the oxidative metabolic state in the skeletal muscle fibers.

View Article and Find Full Text PDF

We assess the potential for formulating a porous liquid that could be used as a selective solvent for the separation of ethane and ethene. Ethane-ethene separation is performed on very large scales by cryogenic distillation, but this uses large amounts of energy. Solvents that are selective to ethane or ethene could potentially enable more efficient liquid-based separation processes to be developed, but to date such solvents have been elusive.

View Article and Find Full Text PDF

We describe a series of Type 3 porous liquids, denoted "T3PLs", based on a wide range of microporous solids including MOFs, zeolites and a porous organic polymer (PAF-1). These solids are dispersed in various non-ionic liquid phases (including silicone oils, triglyceride oils, and polyethylene glycols) which have a range of structures and properties, and that are in many cases sterically excluded from the pores of the solids. Several stable dispersions with high gas uptakes are obtained.

View Article and Find Full Text PDF

The neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip.

View Article and Find Full Text PDF

Body weight regain often causes failure of obesity therapies while the underlying mechanism remains largely unknown. In this study, we report that immune cells, especially CD4+ T cells, mediate the 'memory' of previous obese status. In a weight gain-loss-regain model, we found that C57BL/6J mice with an obesity history showed a much faster rate of body weight regain.

View Article and Find Full Text PDF

Bone was reported as a crucial organ for regulating glucose homeostasis. In this study, we found that Phex mutant mice (PUG), a model of human X-linked hypophosphatemic rickets (XLH), displayed metabolic abnormality in addition to abnormal phosphate homeostasis, skeletal deformity and growth retardation. Glucose tolerance was elevated with enhanced insulin sensitivity in PUG, though circulating insulin level decreased.

View Article and Find Full Text PDF

Maged1 is a member of the type II melanoma antigen (MAGE) family of proteins, which is highly conserved in the brain between mouse and human. Recently, Maged1 has been reported to be involved in depression and impaired sexual behavior. However, the role of Maged1 in learning and memory remains unknown.

View Article and Find Full Text PDF