Tailwater from wastewater treatment plants (WWTP) usually reduces the nitrogen (N) removal efficiency while simultaneously elevates nitrous oxide (NO) emissions due to the low carbon-nitrogen (C/N) ratio. Conflicts between N removal and NO emissions require mitigation by selecting appropriate aquatic plants for tailwater treatment. In this study, a simulated tailwater mesocosm was established using three aquatic plants including Eichhornia crassipes, Myriophyllum aquaticum and Pistia stratiotes.
View Article and Find Full Text PDFObjective: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood.
Methods: We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis.
Constructed wetlands (CWs) are commonly used to control excessive nitrogen from farmlands; however, the interactions between vegetation and microorganisms, nitrogen removal performance, and the mechanisms involved remain unclear in subtropical areas. This study aimed to investigate the nitrogen removal performance and mechanism of CWs containing Canna indica, Acorus calamus, and Thalia dealbata. The results show that CWs with plants had significantly higher nitrogen removal efficiencies than those without, with those planted with T.
View Article and Find Full Text PDFResearch on the toxicity effects of nano-plastics on submerged macrophytes has been increasing over the past several years. However, how the endophytic bacteria of submerged macrophytes respond to nano-plastics remains unknown, although they have been widely shown to help terrestrial plants cope with various environmental stressors. Here, a microcosm experiment was performed to unravel the effects of high concentration of nano-plastics (20 mg/L) on three submerged macrophyte (Vallisneria natans, Potamogeton maackianus, Myriophyllum spicatum) and their endophytic bacterial communities.
View Article and Find Full Text PDFAs a ubiquitous emerging pollutant, microplastics can interact with algal and bacterial communities in aquatic ecosystems. Currently, knowledge on how microplastics influence algae/bacteria is mostly limited to toxicity tests using either monocultures of algae/bacteria or specific algal-bacterial consortium. However, information on the effect of microplastics on algal and bacterial communities in natural habitats is not easily available.
View Article and Find Full Text PDFMicroplastics are considered as the emerging pollutants, which not only directly affect aquatic organisms, but also causes combined pollution by adsorbing other pollutants. Diuron, as one of the most widely used herbicides, is frequently monitored in the aquatic environment for its adverse effects on aquatic organisms. However, little is known about the combined toxicity of microplastics and diuron to aquatic organisms, especially diatoms.
View Article and Find Full Text PDFIn this study, the effects of vitamin A and its metabolite, all-trans retinoic acid (ATRA), on the proliferation and differentiation of preadipocytes and the intestinal microbiome in Yanbian yellow cattle were investigated. Preadipocytes collected from Yanbian yellow cattle treated with different concentrations of ATRA remained in the G1/G0 phase, as determined by flow cytometry. Quantitative reverse-transcription polymerase chain reaction and western blotting analyses showed that the mRNA and protein expression levels of key adipogenic factors, peroxisome proliferator- activated receptor gamma (PPARγ), CCAAT enhancer-binding protein α (C/EBPα), and extracellular signal-regulated kinase 2 (ERK2), decreased.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs of approximately 21 to 23 nucleotides in length. Owing to their regulation of gene expression and many physiological processes including fat metabolism, they have become a popular research topic in recent years; however, the exact functional mechanisms by which they regulate fat metabolism have not been fully elucidated. Here, we identified miR-15a, which specifically acquired the 3' untranslated region (UTR) containing 4-aminobutyrate aminotransferase (ABAT), and validated the regulation of its expression and involvement in adipogenesis mechanisms.
View Article and Find Full Text PDFClimate warming and eutrophication caused by anthropogenic activities strongly affect aquatic ecosystems. Submerged macrophytes usually play a key role in shallow lakes and can maintain a stable clear state. It is extremely important to study the effects of climate warming and eutrophication on the growth of submerged macrophytes in shallow lakes.
View Article and Find Full Text PDFAlgal dominance between phytoplankton and epiphyton plays an essential role in predicting shallow lake shifts between clear-water and turbid-water states. However, compared to resources competition, studies on algal life-form shifts between phytoplankton and epiphyton have traditionally received less interest, as few studies have focused on algal communities in both habitats concurrently. We conducted a 4 × 3 factorial design microcosm experiment to explore the mutual feedback relationship between phytoplankton and epiphyton.
View Article and Find Full Text PDFSediment nitrogen (N) cycling is an important biological removal process for N permanently and driven by N-cycling microbial community. There is a growing interest in interactions between submerged vegetation (SV) and sediment N-cycling bacterial community, because of the close link between rooted aquatic plants and the sediment microbes. However, the effects of SV on the sediment N-cycling bacterial community are still controversial.
View Article and Find Full Text PDFPeriphyton plays an important role in lake ecosystems processes, especially at low and intermediate nutrient levels where periphyton contribution to primary production can be similar to or exceed that of phytoplankton. Knowledge of how periphyton responds to key drivers such as climate change and nutrient enrichment is, therefore, crucial. We conducted a series of mesocosm experiments over four seasons to elucidate the responses of periphyton communities to nutrient (low and high, TN-0.
View Article and Find Full Text PDFIn this contribution, citrate-based fluorophore (CF)-modified cellulose nanocrystals (CNCs) were prepared in a facile manner using sulfuric acid hydrolysis of citric acid/cysteine-treated microcrystalline celluloses. These rod-like CNCs have an average length of 156 nm and an average width of 7.9 nm.
View Article and Find Full Text PDFStoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2013
Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes.
View Article and Find Full Text PDFTo directly select submerged macrophytes with high accumulation capability from the field, 24 eutrophic lakes along the middle and lower reaches of the Yangtze River were investigated in the study. These eutrophic lakes have large amounts of heavy metals in both water and sediments because of human activities. The results showed that Najas marina is a hyperaccumulator of As and Cd, Ceratophyllum demersum is a hyperaccumulator of Co, Cr, and Fe, and Vallisneria natans is a hyperaccumulator of Pb.
View Article and Find Full Text PDF