Publications by authors named "Beibei Ding"

The effect of curdlan gum (CG), gellan gum (GG), and xanthan gum (XG) on the quality characteristics of hot-dry noodles (HDN) was investigated. The rheology properties were used to evaluate the quality of the dough, the textural, viscosity, cooking characteristics and water states were investigated to study the quality changes of HDN. Three microbial polysaccharides were found that it could improve the quality of wheat flour and significantly increase the starch viscosity of HDN and delay the water migration rate of HDN.

View Article and Find Full Text PDF

Sub-nanometric materials (SNMs) represent a series of unprecedented size-/morphology-related properties applicable in theoretical research and diverse cutting-edge applications. However, in-depth investigation and wide utilization of organic SNMs are frequently hindered, owing to the complex synthesis procedures, insufficient colloidal stability, poor processability, and high cost. In this work, a low-cost, energy-efficient, convenient, effective, and scalable method is demonstrated for directly exfoliating chitin SNMs from their natural sources through a one-pot "tandem molecular intercalation" process.

View Article and Find Full Text PDF

Osteoarthritis (OA) is one of the most common chronic diseases, in which inflammatory responses in the articular cavity induce chondrocyte apoptosis and cartilage degeneration. While mechanical loading is reported to mitigate synovial inflammation, the mechanism and pathways for the loading-driven improvement of OA symptoms remain unclear. In this study, we evaluated the loading effects on M1/M2 polarization of synovial macrophages via performing histology, cytology, and molecular analyses.

View Article and Find Full Text PDF

Chitosan oligosaccharides (COS) are a derivative of low molecular weight chitosan and are potent natural antimicrobial agents. The antimicrobial activity of COS against Aspergillus flavus and Aspergillus fumigatus was evaluated by minimum inhibitory concentration (MIC) and inhibition of mycelial growth. The MICs of COS against these two fungi were 31.

View Article and Find Full Text PDF

Abstract: Effects of chitosan oligosaccharide (COS) and hyriopsis cumingii polysaccharide (HCP) on the quality of wheat flour and corresponding extruded flour products were investigated in this work. The results showed that both COS and HCP are conducive to the improvement of dough quality. Moreover, compared to control group samples, the moisture content, expansion ratio and oil absorption rate of the samples were increased and the hardness were decreased with the addition of COS.

View Article and Find Full Text PDF

Traditionally, energy-intensive and time-consuming postmechanical disintegration processes are inevitable in extracting biopolymer nanofibrils from natural materials and thereby hinder their practical applications. Herein, a new, convenient, scalable, and energy-efficient method for exfoliating nanofibrils (ChNFs) from various chitin sources via pseudosolvent-assisted intercalation process is proposed. These self-exfoliated ChNFs possess controllable thickness from 2.

View Article and Find Full Text PDF

The retrogradation of starch occurs in the process of freezing storage of par-baked baguette, resulting in easy staling and a decrease of consumer acceptance. The objective of this study was to assess whether the staling of par-baked baguette could be improved by the addition of Arabic gum (AG), Sodium alginate (SA), and Sesbania gum (SG). The physical, thermal dynamic, and microstructure properties of par-baked baguette during frozen storage were analyzed.

View Article and Find Full Text PDF

Effects of inulin on protein in frozen dough during frozen storage were investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The strength of electrophoretic bands in A1 (32-57 kDa) and A2 (20-25 kDa) regions and the content of freezable water and sulfhydryl in frozen dough with inulin were lower than those of the blank under the same storage time. The gluten structure of frozen dough with 2.

View Article and Find Full Text PDF

N-methyladenosine is a unique type of base methylation in that it blocks Watson-Crick base pairing and introduces a positive charge. mA is prevalent in yeast and mammalian mRNA and plays a functional role. However, little is known about the abundance, dynamics, and topology of this modification in plant mRNA.

View Article and Find Full Text PDF

A novel approach modifying cells to express viral markers to elicit protective immunity responses (decoy cellular vaccination) in the prevention of COVID-19 disease is currently being explored. Our approach entails utilizing SARS-CoV-2 Spike antigen-expressing, non-replicating cells as carriers and presenters of immunogenic antigens, so called "I-cells". By using irradiated cells as presenting vehicles of SARS-CoV-2 viral antigens(s) in a cellular context, these presented viral proteins can be recognized by the host immune system, thus, an efficient protective immune response might be elicited.

View Article and Find Full Text PDF

Osteoporotic osteoarthritis (OPOA) is a common bone disease mostly in the elderly, but the relationship between Osteoporotic (OP) and osteoarthritis (OA) is complex. It has been shown that knee loading can mitigate OA symptoms. However, its effects on OPOA remain unclear.

View Article and Find Full Text PDF

Rigid chitin nanofibers (ChNFs) self-assembled from dilute α-chitin/KOH/urea aqueous solution were utilized as 1D filler to reinforce soft natural rubber (NR). The prepared ChNFs suspension has good compatibility with natural rubber latex (NRL) and thus showing favorable dispersibility in NR matrix at nanoscale. The bio-nanocomposites were fabricated by casting and evaporating the pre-mixed NRL/ChNFs suspensions with different ChNFs loadings.

View Article and Find Full Text PDF

Deoxyhypusine synthase (DHS) is encoded by a nuclear gene and is the key enzyme involved in the post-translational activation of the eukaryotic translation initiation factor eIF5A. DHS plays important roles in plant growth and development. To gain a better understanding of DHS, the petunia () gene was isolated, and the role of PhDHS in plant growth was analyzed.

View Article and Find Full Text PDF

TEMPO-mediated oxidation has been successfully used to prepare carboxylated chitin nanofibers (ChNFs) with purified chitins originating from the outer shells of crab and shrimp (α-form) or tubeworm (β-form). However, the method for obtaining carboxylated ChNFs with squid pen chitin (hydrated β-form) has not been developed yet. It might be due to the existence of the small amount of partial deacetylation (DD ≈ 9%) in the squid pen β-chitins.

View Article and Find Full Text PDF

Chitin nanofibers (ChNFs) have emerged as a rising nanomaterial due to their excellent mechanical properties, biocompatibility and biodegradability etc. Herein, carbonylated ChNFs (C-ChNFs) and zwitterionic ChNFs (NC-ChNFs) decorated with both amino (-NH) and carboxyl (-COOH) groups were used to prepare ChNFs/natural rubber (NR) nanocomposite films by dip molding method, respectively. The results showed that C-ChNFs had better dispersion than that of NC-ChNFs in NRL matrix.

View Article and Find Full Text PDF

Novel hybrid nanomaterials composed of graphene and chitin nanofibers (ChNFs) were successfully prepared by one-pot ball milling. Under strong shear and collision force of ball milling, graphite was exfoliated to mono-layer or few-layer graphene with the assistance of chitin nanofibers. Unexpectedly, the hybridization of exfoliated graphene and ChNFs was realized simultaneously.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) are predominantly obtained by the traditional sulfuric acid hydrolysis process. However, as-prepared CNCs powder features low thermal stability and poor redispersibility due to the existence of sulfonate groups and the hydrogen bond interaction among particles. Herein, by mixing the ionic liquid [BMIm][BF] with freshly prepared CNCs without dialysis through a simple rotary evaporate procedure, the simultaneous improvement of thermal stability and redispersibility of CNCs has been achieved.

View Article and Find Full Text PDF

Being one type of the most abundant marine polysaccharides in nature, chitin has inert chemical properties and thus prolonged been hindered for high-value utilization. A mussel-inspired catecholic chemistry was found to be able to confer nature-derived mesoporous chitin aerogels with high and tunable surface activities. When further combining with their high porosity, high specific surface area, mechanical toughness and unique nanofibrous architecture, these catechol-activated chitin aerogels could be used as a unique supporting matrix to immobilize Ag nanoparticles.

View Article and Find Full Text PDF

2D nanomaterials have various size/morphology-dependent properties applicable in electronics, optics, sensing, and actuating. However, intensively studied inorganic 2D nanomaterials are frequently hindered to apply in some particular and industrial fields, owing to harsh synthesis, high-cost, cytotoxicity, and nondegradability. Endeavor has been made to search for biobased 2D nanomaterials with biocompatibility, sustainability, and biodegradability.

View Article and Find Full Text PDF

CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored.

View Article and Find Full Text PDF

Most hydrogels involve synthetic polymers and organic cross-linkers that cannot simultaneously fulfill the mechanical and cell-compatibility requirements of biomedical applications. We prepared a new type of chitosan physical hydrogel with various degrees of deacetylation (DDs) via the heterogeneous deacetylation of nanoporous chitin hydrogels under mild conditions. The DD of the chitosan physical hydrogels ranged from 56 to 99%, and the hydrogels were transparent and mechanically strong because of the extra intra- and intermolecular hydrogen bonding interactions between the amino and hydroxyl groups on the nearby chitosan nanofibrils.

View Article and Find Full Text PDF

High-flexibility, high-toughness double-cross-linked (DC) chitin hydrogels are prepared through a sequential chemical and physical cross-linkings strategy. The incorporation of chemically and physically cross-linked domains imbues the DC chitin hydrogels with relatively high stiffness, high toughness, and toughness recoverability.

View Article and Find Full Text PDF

With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability.

View Article and Find Full Text PDF